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ABSTRACT

Program verification is a promising approach to improvinggeam
quality, because it can search all possible program ex@tufior
specific errors. However, the need to formally describeestirbe-
havior or errors is a major barrier to the widespread adoptb
program verification, since programmers historically haeen re-
luctant to write formal specifications. Automating the pss of
formulating specifications would remove a barrier to progneer-
ification and enhance its practicality.

This paper describespecification mininga machine learning
approach to discovering formal specifications of the prof®¢that
code must obey when interacting with an application progiam
terface or abstract data type. Starting from the assumptiaha
working program is well enough debugged to reveal strongshin
of correct protocols, our tool infers a specification by abse
program execution and concisely summarizing the frequetet-i
action patterns as state machines that capture both tehgata
data dependences. These state machines can be examineabby a p
grammer, to refine the specification and identify errors, et be
utilized by automatic verification tools, to find bugs.

Our preliminary experience with the mining tool has been
promising. We were able to learn specifications that not caly-
tured the correct protocol, but also discovered serious bug

1. INTRODUCTION

It is difficult to imagine software without bugs. The richses
and variety of errors require an equally diverse set of tepes
to avoid, detect, and correct them. Testing currently isdétec-
tion method of choice. However, the high cost and inherenitdi-
tions of testing has lead to a renewed interest in other ages
to finding bugs. One of the most promising directions is talét
systematically detect important classes of errors [1-&,%,10].

While program verificationtools do not prevent programming
errors, they can quickly and cheaply identify oversightdyem
the development process, when an error can be corrected foy a p
grammer familiar with the code. Moreover, unlike testingme
verification tools can provide strong assurances that arpnods
free of a certain type of error.
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These tools, in general, statically compute an approxinabif
a program’s possible dynamic behaviors and compare it again
specification of correct behavior. These specificationsrofire
easy to develop for language-specific properties—such aisl-av
ing null dereferences and staying within array bounds. Bveen
language properties are more difficult to express and chibely,
potentially apply to every program written in the language,an
investment in a verification tool can be amortized easily.

On the other hand, specifications particular to a programpfa
its abstractions or datatypes, may be difficult and expensiwde-
velop because of the complexity of these mechanisms andhthe |
ited number of people who understand them. Also, as these spe
ifications may apply to only one program, their benefits amezo
spondingly reduced. Program verification is unlikely to hidely
used without cheaper and easier ways to formulate spedaifitsat

This paper explores one approach to automating much of the pr
cess of producing specifications. This technique, cadfeetifica-
tion mining discovers some of the temporal and data-dependence
relationships that a program follows when it interacts vathap-
plication programming interface (API) or abstract dataypDT).

A specification miner observes these interactions in a nqpiro-
gram and uses this empirical data to infer a general ruletatmu
programs should interact with the APl or ADT. These rulescam-
cisely summarized as state machines that capture both tahgmal
data dependences. These state machines can be both exémyined
a programmer, to refine the specification and identify errarsl
utilized by automatic verification tools, to find bugs.

Mining proceeds under the assumption that an executing pro-
gram, which presumably has passed some tests, generadlyanose
API or ADT correctly, so that if a miner can identify the commo
behavior, it can produce a correct specification, even froo p
grams that contain errors. Rather than start from the progra
text, in which feasible and infeasible paths are intermiaed cor-
rect paths are indistinguishable, mining begins with tsaafea pro-
gram'’s run-time interaction with an API or ADT. These traces
not only limited to feasible paths, but in general do not eaoner-
rors.

The program in Figure 1 illustrates these points. The progra
uses the server-side socket API [7]. It generally observescor-
rect protocol: create a new socketthrough a call tosocket ,
prepares to accept connections by callitg nd andl i st en, call
accept for each connection, service each connection, and finally
call cl ose to destroys. Unfortunately, the program is buggy: if
ther et ur n statement on line 16 is executedis never closed.

Even though a program is buggy, individual interaction ésac
can be correct. Figure 2 shows one such traceotidl is rarely
true, it might be difficult to invent a test to force the prograo
behave badly. On the other hand, correct traces enable a tine



1 int s = socket (AF_I NET, SOCK_STREAM 0)
2 ...

3 bind(s, &serv_addr, sizeof(serv_addr));
4 ...

5 listen(s, 5);

6 ...

7 while(1l) {

8

int ns = accept(s, &addr, & en)
9 if (ns < 0) break

10 do {

11 read(ns, buffer, 255);
12

13 wite(ns, buffer, size)
14 if (condl) return

15 } while (cond2)
16 cl ose(ns)

18 cl ose(s);

Figure 1: An example program using thesocket API.

1 socket(domain = 2, type = 1, proto = 0
return = 7)
2 bind(so = 7, addr = 0x400120, addr_len = 6
return = 0)
3 listen(so = 7, backlog = 5, return = 0)
4 accept(so = 7, addr = 0x400200
addr _| en = 0x400240, return = 8)
5 read(fd = 8, buf = 0x400320, len = 255
return = 12)
6 wite(fd = 8, buf = 0x400320, len = 12
return = 12)
7 read(fd = 8, buf = 0x400320, len = 255
return = 7)
8 wite(fd = 8, buf = 0x400320, len =7
return = 7)
9 close(fd =8, return = 0)
10 accept(so = 7, addr = 0x400200
addr _| en = 0x400240, return = 10)
11 read(fd = 10, buf = 0x400320, len = 255
return = 13)
12 wite(fd = 10, buf = 0x400320, len = 13
return = 13)
13 close(fd = 10, return = 0)
14 close(fd = 7, return = 0)

Figure 2: Part of the input to our mining process: a trace of an
execution of the program in Figure 1.

infer a specification of the correct protocol. A verificatimol that
uses the specification to examine all program paths (e.d.0[2,
could then find the rare bug.

Our specification mining system is composed of four parts:

tracer, flow dependence annotator, scenario extractoraatama-
ton learner (Figure 4). The tracer instruments programfatthey
trace and record their interactions with an API or ADT, ashasl
compute their usual results. We implemented two tracerse i®n
a replacement for the C stdio library, which requires reciimgp
programs. The other is a more general executable editirighab
allows arbitrary tracing code to be inserted at call sitdse Tracers
produce traces in a standard form, so that the rest of theepsas
independent of the tracing technology.

Flow dependence annotation is the first step in refining tees
into interaction scenarios, which can be fed to the leartieron-
nects an interaction that produces a value with the intiemasthat
consume the value. Next, the scenario extractor uses thegemd
dences to extradhteraction scenarios-small sets of dependent

socket (return = x)
bi nd(so = x)
listen(so = x)
accept(so = x, return =y)
read(fd =y) wite(fd =vy)
close(fd =vy)

V/

close(fd = x)

Figure 3: The output of our mining process: a specification
automaton for the socket protocol.

interactions—and puts the scenarios into a standard,cab$orm.

The automaton learner is composed of two parts: an off-tiedf-s
probablistic finite state automaton (PFSA) learner and appos
cessor called theorer. The PFSA learner analyzes the scenario
strings and generates a PFSA, which should be both small and
likely to generate the scenarios. A PFSA is a nondeterniiniist
nite automaton (NFA) in which each edge is labelled by anrabst
interaction and weighted by how often the edge is traverdaitew
generating or accepting scenario strings. Rarely-usedsdgrre-
spond to infrequent behavior, so the corer removes themcoier
also discards the weights, leaving an NFA. A human can vaida
the NFA by inspection, at which point the NFA specificatiom ca
be used for program verification. Figure 1 shows a specitiodbr
the socket protocol of the program in Figure 1.

This paper makes the following contributions:

e We introduce a new approach, callspecifications mining
for learning formal correctness specifications. Since ifipec
cation is the portion of program verification still depentien
primarily on people, automating this step can improve the
appeal of verification and help improve software quality.

e We use the observation thedmmon behavior is often cor-
rect behaviotto refine the specifications mining problem into
a problem of probabilistic learning from execution traces.

e We develop and demonstrate a practical technique for prob-
abilistic learning from execution traces. Our technique re
duces specification mining to the problem of learning regula
languages, for which off-the-shelf learners exist.

The rest of the paper is organized as follows. Section 2 deeel
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Figure 4: Overview of our specification mining system.

a formal statement of the specification mining problem. i®ac3
discusses tracers and the flow dependence annotator. i5éate
scribes the scenario extractor and the automaton leareetio 5
presents a dynamic checker for the mined specificationgidbe®
discusses the results of some experiments with the minwigatal
the checker. Section 7 discusses related work and Sectiom-8 ¢
cludes the paper.

2. THE PROBLEM

This section develops a formal statement of the specificatio
mining problem. At its most ambitious, specification miniag
tempts to solve an unsolvable problem:

ProOBLEM 2.1. LetI be the set of all traces of interactions with
an APl or ADT, andC' C I be the set of all correct traces of in-
teractions with the APl or ADT. Given an unlabelled trainisgf T’
of interaction tracek from I, find an automatom that generates
exactly the traces iil’. A is called aspecification An algorithm
that findsA is called aspecification miner

The rest of this section examines successive restrictibtisio
problem, which lead to a problem that can be attacked with the
methods of this paper. These simplifications were choosando-
modate our techniques, and other restatements of the sja¢icifi
mining problem are certainly possible.

Problem 2.1 can not be solved because it places no restisctio
on the seC. If C is not recursively enumerable, thehdoes not
exist. In this paper, we require thét be generated by a finite-
state automaton (that i€; is a regular language). This decision
is forced by two practical considerations. First, modelakegs re-
quire finite-state specifications. Second, the algorittontefrning
finite-state automata are relatively well-developed.

It is not enough to simply say that must be regular, because
traces of most programs are not regular. For example, censid
a C program (i nkedLi st ) that takes a numbet on the com-
mand line, constructs a linked list of size(allocating the nodes

1By an “unlabelled training set”, we mean that no informatisn
provided as to which of the elementsihare also inC.

with mal | oc), and then destroys the linked list, deallocating the
nodes withf r ee in first-allocated, last-freed order. Ignoring the
finite arithmetic, the traces do not form a regular languagiest,

a regular language must be defined over a finite alphabet, but
Li nkedLi st can make an unbounded number of distimat -

| oc andf r ee calls. Second,i nkedLi st always makes a num-
ber of mal | oc calls followed by an equal number bf ee calls,
which is the canonical non-regular language.

AlthoughLi nkedLi st 'straces do not form a regular language,
its traces contain subtraces that do. Given a trace and &ctabj
mentioned in that trace, consider the subtrace of the trantam-
ing calls tonmal | oc that returrno and calls td r ee that are passed
o. The subtrace is simplyrmal | oc call, followed by af r ee call.

If the trace mentions objects, there is one such subtrace for each
object. Each subtrace is exactly like all of the others, pkéer

the particular object that it allocates and frees. Now replthat
object in each subtrace with a standard name,ssay Now, all

of the subtraces are identical, and the learner has a vemygshint
thatf r ee should always followral | oc. We call the renamed
subtracesnteraction scenarios

Our approach simplifies Problem 2.1 in two ways. First, the
learner does not learn directly from traces. Instead, arpoggssor
extracts interaction scenarios from the traces. The stEn@manip-
ulate no more thah data objects, for sonve intheLi nkedLi st
examplejk = 1. Second, the s&ts of correct scenarios is required
to be regular. The simplified specification mining problem naw
be defined:

PROBLEM 2.2. Let Is be the set of all interaction scenarios
with an API or ADT that manipulate no more th&rdata objects.
LetCs C Is be the regular set of all correct scenarios. Given an
unlabelled training sef’s of interaction scenarios fronig, find a
finite-state automatom s that generates exactly the scenarios in
Cs.

Problem 2.2 is also impossible to solve. The careful readsr m
have noticed that the training st does not depend ofis. That
is, no matter what's is, any subset of s is a valid training set!
Obviously, under these conditions, there is no basis on lwtoc
chooseSs. The definition of Problem 2.2 allowed the training sets
to be chosen so liberally in order to allow “noisy” trainingts that
contain bad examples (that is, bugs) that are naf'in A satis-
factory definition of noise must wait until the problem hasbe
simplified further. For now, we simplify the problem by assog
that the training “set” is in fact an infinite sequence of su@s
from C's alone, such that each element@ occurs at least once:

PrROBLEM 2.3. Let Is be the set of all interaction scenarios
with an API or ADT that manipulate no more thardata objects.
LetCs C Is be the regular set of all such correct scenarios. Fi-
nally, letTs = co, c1, ... be an infinite sequence of elements from
C's in which each element @f's occurs at least once.

For eachn > 0, examine the first elements of’'s and produce
a finite-state automatod s, , such that the sequence of finite-state
automatads,, As, , ... has this property: for som&’ > 0, As,
generates exactly the scenarios(@fy and As, = As, for all
n > N. We say that the sequengs;,, As, , ... identifiesCs in
the limit.

Perhaps surprisingly, Problem 2.3 is also undecidable. defir
inition of Problem 2.3 is inspired by E Mark Gold’s seminappa
on language identification in the limit [14], in which Goldasirs
that regular languages can not be identified in the limit [LHe-
orem 1.8]. His proof is too long to repeat here, but the idea of



the proof is to present the members of an infinite regularuage

to the learner in such a way that the learner is forced to ohang
its guess infinitely often, cycling through a never endingusnce

of finite sublanguages of the infinite language. Intuitiyelye
learner’s dilemma is that any finite sequence of examples fie
infinite language is also a sequence of examples from a fiaite |
guage, and the learner has no basis for preferring one of thes
the other. Sinc&’'s is a possibly infinite regular language, Gold’s
theorem applies to Problem 2.3.

Gold’s paper did not end work on learning regular languages
from examples. Subsequent work avoids the dilemma exploite
in Gold’s proof by providing the learner with extra inforna that
allows it to justify choosing a less general automaton overoae
general one (and vice versa). One class of approaches gdben
learner with examples generated according to a probalufigri-
bution; this sort of approach is particularly interestingis because
it also gives the learner a method for dealing with noise snirit
put. The task of the learner is to learn a close approximaifdche
probability distribution:

Let I's be the set of all interaction scenarios with an
API or ADT that manipulate no more thandata ob-
jects. LetP and P be probability distributions over
Is. We say that® is an e-good approximation ofP,
fore > 0, if

D(P,P) < e

where D(P, 13) is some measure of distance between
PandP.

Just as Problem 2.2 restrictét to be a regular sef? must be
restricted to a manageable class of distributions. We ehdlos
distributions generated by probabilistic finite state audta (PF-
SAs). A PFSA is a probabilistic analogue of a nondetermimist
finite state automaton. That is, a PFSA is a tuple @, gs, g5, p)
where

3} is an output alphabet.

e () is a set of states.

gs € Q is the start state of the automaton.

gs € Q is the final state of the automaton.

p(q, ¢, a) is a probability function, giving the probability of
transitioning fromg € Q to ¢’ € Q while outputting the
symbola € 3. Note thatp(qs,¢’,a) = 0forall ¢ € Q and
a € X.

Thus, a PFSA generates a distribution that assigns popitle
abilities to the strings in a regular language. Basing odinde
tion on the standard definition for learning probabilisticité au-
tomata [20], we can now give our final formulation of the sfieci
cation mining problem:

PROBLEM 2.4. Let Is be the set of all interaction scenarios
with an API or ADT that manipulate no more thardata objects.
Let M be a target PFSA, ané™ be the distribution ovefs that
M generates. IntuitivelyP™ assigns high probabilities to correct
traces and low probabilities to incorrect traces.

Given a confidence parametér> 0 and an approximation pa-
rametere > 0, efficiently find witﬁ probability at least — § a

PFSAM such that its distributio™ is ane-good approximation
of PM . “Efficiently” means that the mining algorithm must run in
time polynomial inl /¢, 1/6, an upper bound: on the number of
states of\/, and the size of the alphabgtof .

int instrunented_socket(int do-
main, int type, int proto)
{
int rc = socket(donmain, type, proto);
fprintf(the_trace_fp,
"socket (domain = %, type = %,
"proto = %, return = %)\n",
dommi n, type, proto, rc);

return rc;

}

Figure 5: lllustration of trace instrumentation (instrume nted
version of socket).

Unfortunately, with reasonable distance metrigsit has been
shown that Problem 2.4 is not efficiently learnable [16]. An e
ficient solution has been found for the case whifeand M are
required to be acyclic and deterministic [24]. Since margrest-
ing specifications of program behavior contain loops, wesehin
use a greedy PFSA learning algorithm that is not guaranteédd
an e-good approximation of\/, but in practice generates succinct
specifications.

3. TRACING AND FLOW DEPENDENCE
ANNOTATION

This section describes the tracing and flow dependence @annot
tion that produce the input to the scenario extractor.

Tracing A tracer instruments a program, so that running it pro-
duces a trace of its interactions with an API or ADT, as welitas
usual results. This paper assumes that a tracer only refrordson
calls and returns, although depending on the API/ADT, theimgi
system allows tracing other events, such as variable aesesset-
work messages.

Figure 5 shows an illustration of the trace instrumentation
specifically the C code for an instrumented version ofsbhe ket
call. This wrapper calls the realocket and records information
about the interaction: the name of the calb¢ket ), arguments,
and return value. The entire socket API could be traced with a
instrumented version of each function.

Our system currently uses two tracers. The first instrumgas
C stdio library, by capturing all library calls and macro @eations
in that API. The second consists of two parts: Perl scrips dlu-
tomatically generate instrumented versions of the fumctialls in
the X11 API, and a tool that edits program executables tcacepl
calls on these routines with calls to instrumented versidie lat-
ter tool is based on the EEL Executable Editing Library [1d¢ia
is very general. It takes as input an executable, a librarinof
strumented functions, and a file specifying which calls i& éxe-
cutable to replace with calls to instrumented functionse Tiost
time-consuming part of tracing an interface is writing thetru-
mented version of each API call, but we believe that this sep
easily automated.

All tracers record interactions in the same format, so thatrést
of the mining system is independent of the particular tracsed.
An interaction skeletois of the form

interaction(attributeo, . . . , attribute,)

where interaction names the interaction (that is, the name of a
function) andattribute; names theth attribute of the interaction.
Skeletons are just a convenient way of grouping interastidimey

do not appear in traces. An interaction instantiates a skelby



assigning values to the attributes:

interaction(attributeo = vo, . . . , attribute, = vy)

When tracing function calls, interaction attributes uuedpresent
function arguments and return values, as in Figure 2. Stradt
data can be represented by flattening the structures. Forpsa
given this C code

struct S { int x;
void f(S* s);

int y; };

the tracer could record interactions withwith instances of this
skeleton
f(S, S x, S.y)

By convention, this paper names traces with the léitand in-
teractions with variations of the lettér The actual interactions in
a trace of lengttn 4+ 1 are numbered frond to n; for example,
T = to,...,tn. The notationt.a denotes the: attribute of the
interactiont.

Flow dependence annotator

- Untyped trace
Traces Dependence analysi with dependences

Type inference

'

Annotated
traces

Figure 6: Detailed view of the flow dependence annotator.

Flow dependence annotatiorFlow dependence annotation anno-
tates each input trace with flow dependences and type assigam
The scenario extractor uses these annotations to extemasos—
small sets of dependent interactions—from the trace andttegrh
scenario into a canonical form. The detailed view in Figushéws
that flow dependence annotation is a two-step process., Bast
pendence analysis marks the trace with flow dependenceshwhi
constrain how interactions may be reordered and identifgted
interactions that could be grouped into a scenario for thieraa-
ton learner. Next, type inference assigns a type to eaclairtien
attribute in the trace. The scenario extractor uses thestygpavoid
naming conflicts when it puts a scenario into standard forra- D
pendence analysis and type inference both examine thegnoif
each input trace, so their running time must be nearly linear

The miner treats all values as abstract objects whose ynderl
ing representation is unknown. However, interactions cgpedd
on results from other interactions. For example, in Figur¢h2
bi nd call (line 2) depends on theocket call (line 1), because
the bi nd call uses file descriptor 7 returned by thecket call.
The order of these two interactions can not be reversed. By co
trast, the interactions that manipulate file descriptori@ed 4-9)
could be exchanged with the interactions that manipulaged-
scriptor 10 (lines 10-13), since these groups of operatimasn-
dependent of each other. More importantly, a scenario that&ins
all interactions related to thel ose on line 13 should not include
the interactions on lines 4-9.

Definers:socket . return
bi nd. so
|isten.so
accept.return
close. fd

bi nd. so
|isten.so
accept.so
read. fd
wite.fd
close. fd

Users:

Figure 7: Attributes of socket interactions that define and wse
their values.

Flow dependences connect attributes that change the $tate o
abstract object (that is, attributes tlttfinethe object) to interac-
tion attributes that depend on the state of an abstract biijeat
is, attributes thatisethe object). Ideally, the dependence analyzer
would annotate a trace with flow dependences using no infiloma
beyond the trace itself. Our current system, however, saie an
expert to tell the analyzer which attributes of interacsionay de-
fine objects, and which attributes may use objects. This wwarkt
be done once for each API/ADT. Extending the system to irfer t
sets of definers and users automatically is future work.

For simplicity, the examples in this paper assume that only
socket-valued attributes of the interactions in Figurer2yodepen-
dences. Figure 7 lists attributes of interactions in Figlithat de-
fine and use socket values. We constructed this table as/flieor
each socket, the kernel maintains a hidden data structorae $f
the fields of that structure carry the state of the socket:thdrehe
socket is closed or open, whether or not it can accept coiomsct
and so on. Other fields simply hold data: bytes that are mudstg,
the port to which the socket is connected, and so on. Definers i
Figure 2 typically modify one or more of the state fields of tlaa
structure. Users typically read one or more of those fieldslds
of the structure that merely hold data are ignored.

Creating Figure 7 required expert knowledge. However, tiaie
whenever the state fields of a socket’s data structure chémgeet
of API calls that may follow also changes. For example, adter
socket is closed,ead andwr i t e calls are no longer allowed. The
factthatcl ose changes the state of the socket can be inferred from
the trace: before al ose, there ara eads andwr i t es; after a
cl ose, there are no eads andw i t es. That is, interactions that
change state also change the sorts of interactions that oflayf
In future work, we hope to replace the expert with an autoenati
tool that uses this fact to infer the sets of definers and users

Given the lists of attributes that define or use objects, depece
analysis is a dynamic version of the reaching definitiondlemm.
The analyzer traverses the tréEe= to, . . . , t, in order fromt, to
t», Maintaining a tablé\/ that maps values to attributes of actual
interactions. Initially,M is empty. Ift;.a defines an objeat, the
annotator updated/ to mapo to ¢;.a. If t;.a uses an objeat and
M mapso to t;s.a’, then the analyzer places a flow dependence
from ¢;.a to t;s.a’. The running time of the algorithm scales lin-
early in the length of the trace. The space required scaiesiliy
in the number of different values referenced by the trace.

For notational convenience, we introduce a relatigrsuch that
dy(t;.a,ty.a’) if and only if there is a flow dependence frama
to t;;.a’. The relation is extended from interaction attributes to
interactions in the natural wayty (¢;, ¢,/ ) holds if and only if there



Typeocket . return)=T0
Type®i nd. so) =TO

Type( i sten. so)=TO
Type@ccept.so)=T0
Type@ccept.return)=T0
Type( ead. fd) =TO
Typefwite. fd)=T0
Type! ose. fd)=T0

Figure 8: The only valid typing for the skeleton attributes used
by the trace in Figure 2.

is somef andf’ such thati;(t;.a,t;.a’).

Type inference is the next step in the flow dependence ammotat
Type inference assigns a type to each skeleton attributeastiia-
volved in dependences. If a value never flows between amicsta
of one skeleton attribute and an instance of another skelato
tribute, then type inference assigns the skeleton atetseparate
types. Strictly speaking, flow dependences alone give theaso
extractor enough information to extract scenarios andhmmtinto
a standard form. However, as Section 4 explains, the scenari
tractor can use the assurance that values will never flow derw
certain attributes in a scenario to reduce naming conflidige
inference infers a typing that satisfies this condition:

If df(ti.a,ty.a’), then the typing gives the skeleton
attribute oft;.a and the skeleton attribute of .a the
same type.

Figure 8 gives a typing for the skeleton attributes used lgy th
socket trace in Figure 2. In this example, every skeletaibate
must have the same type because all socket attributes imatte t
are on some dependence chain with an instanceafase. f d
attribute.

The inference algorithm uses Tarjan’s union-find algorifl2]
and requires time nearly linear in the trace. The type imfere
starts with an initial typing that gives each skeleton hittre
its own unique type. Then, the inferer visits each depenglenc
d¢(ti.a,t;.a”) and unifies the types of the skeleton attribute;af
and the skeleton attribute 6f .a. Type inference is complete when
all dependences have been visited.

4. SCENARIO EXTRACTION AND
AUTOMATON LEARNING

This section explains how the scenario extractor and autmma
learner work. The first tool extracts interaction scenarigsnall
sets of interdependent interactions—from annotated $rand pre-
pares them for the automaton learner. The second tool igfers-
ifications from scenarios, not complete traces, for twoaeas

The primary reason is that scenarios are much shorter thaedr
and the running time of our PFSA learner increases as the thir
power of the length of its input—this is typical for automatearn-
ers.

Also, we restrict scenarios to refer to a small number of cisje
by bounding the size of the scenario. Section 2 argues thatdo
ing the number of objects makes specification mining trdetab
Bounding the number of objects is not a severe limitatiorabee
verification tools can verify that the specification holdsrfwultiple
bindings of program objects to specification objects. Famneple,
although the protocol specified in Figure 1 mentions two clisje:
andy, a tool that attempts to verify the program in Figure 1 might

bind y to more than one instance o6 as it simulates the loop in
lines 7-17.

The scenario extractor simplifies and standardizes theasican
before passing them to the automaton learner, because ecir sp
fication mining system uses an off-the-shelf PFSA learner.aA
ternative, which we have not tried, is to design a speciapqse
learner for scenarios. Both schemes have benefits and costs.

There are several off-the-shelf learners that learn PFS#k a
similar automata from strings. Since our design transfoseces-
narios to strings, a new learner can be substituted for thenés
currently used. If the new learner learns PFSAs, no charmgtwet
mining system are necessary. If the learner does not leaBABF
the corer may need to be changed, but none of the components be
fore the automaton learner in Figure 4 would require modifica
In our experience, this flexible design was helpful. Befatlisig
on the PFSA learner as use it now, we tried and rejected oreg oth
PFSA learner [21].

On the other hand, a special-purpose learner could defer dec
sions that our mining system now must make before invokirg th
off-the-shelf learner. For example, when the scenariceextr re-
places the concrete values in a scenario with abstract ndtndess
so without regard to the names given to values in other senar
Although the extractor always names equivalent scenaridbe
exact same way (see below for details), when two scenar®s ar
“close” but not equivalent, the extractor’s choice of naroas pre-
vent the PFSA learner from merging states that it would be &bl
merge with a different naming.

4.1 Scenario extraction

Annotated !
traces !
|
|
7
|

scenarios
I —|

Scenario seeds

Scenario extractor

\J
Simplification simplifde scenarios

|/

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Standardization

Abstract
scenario strings

Figure 9: Detailed view of the scenario extractor.

Figure 9 is a detailed view of the scenario extractor. It neze
two inputs. The first is a set of traces, annotated as destiibe
Section 3. In addition, the user controls which scenarids vei
extracted by supplying a set of scenario seeds. Each seed is a
interaction skeleton. The extractor searches the inpgesdor
interactions that match the seeds and extracts a scenamoefach
interaction. For example, suppose the extractor was givetrace
of socket interactions in Figure 2 andcept (so, return) as
the seed. The extractor would produce two scenarios, onendro
theaccept on line 4 and the other around tlaecept on line
10.

Extraction Producing scenarios from input traces is the first step of
the extraction process. Informally, a scenario is a settefattions
related by flow dependences. Formally, given an annotatex tr



1 socket (domain =

return =

2 bind(so = 7, addr =
return = 0)

type = 1, proto = 0,

0x400120, addr_len =

3 listen(so = 7, backlog = 5, return = 0)
4 accept(so = 7, addr = 0x400200,
addr _| en = 0x400240,
return = 8) [seed]
5 read(fd = 8, buf = 0x400320, |en = 255,
return = 12)
6 wite(fd = 8, buf = 0x400320, len = 12,
return = 12)
7 read(fd = 8, buf = 0x400320, |en = 255,
return = 7)
8 wite(fd = 8, buf = 0x400320, len = 7,
return = 7)
9 close(fd =8, return = 0)

Figure 10: A scenario extracted from around line 4 of Figure 2
with N =10

T = to,...,tn, a scenario is a s C {to,...,tn} with the
property:
If t;; € S, ts,, € S, andty,,...,t;, is a chain of
flow dependent interactions 1A, thent;; € S for any
0<j<n

The extractor builds a scenario around each interactiohértrace
that matches a scenario seed. For any scerfrieed (S) € S is
the interaction that initially matches the seed.

A user-tunable parameté¥ restricts the number of interactions
in the extracted scenarios. Each scenario contains at Maat-
cestors and at mosV descendants of the seed interaction. The
extractor prefers ancestors and descendants whose pasitthe
input trace is close to the position of seed interaction.

Once an interactioms; matching a seed is found, the extractor
uses a two-step algorithm to produce a scenario. First xinaector
constructs the sets:

Sa = {N closest ancestors of ¢}
Sqa = {N closest descendants of ¢s}
Sad {tS}USaUSd

The extractor uses a simple prioritized worklist algoritboncon-
struct the set of ancestors (descendants). The initial kgoik the
set of immediate ancestors (descendants),of Repeatedly, un-
til the worklist is empty orN ancestors (descendants) are found,
the extractor removes from the worklist the ancestor (dedaet)
whose position in the trace is nearéstadds it to the set of ances-
tors (descendants), and adds its immediate ancestorse(uksus)

to the worklist.

The result,S,q, is not necessarily a scenario, because interac-
tions along some flow dependence chains from ancestars tof
descendants aof; might be missing. Any such interactions must
lie in the trace between the earliest ancestoin S,; and the lat-
est descendany; in S,.4, and must be reachable both by following
flow dependences from some ancestotoénd by following flow
dependences in reverse from some descendant dhus, the ex-
tractor searches depth-first forwards from each elemest,cdnd
backwards from each element §f to construct

1 socket(return =7)

2 bind(so = 7)

3 listen(so = 7)

4 accept(so = 7, return = 8) [seed]
5 read(fd = 8)

6 wite(fd = 8)

7 read(fd = 8)

8 wite(fd = 8)

9 close(fd = 8)

Figure 11: The simplification of the scenario in Figure 10.

1 socket(return = x0: TO0) (A
2 bind(so = x0:T0) (B)
3 listen(so = x0:T0O) (O
4 accept(so = x0:TO, return = x1: TO) [seed] (D)
5 read(fd = x1:T0) (E)
7 read(fd = x1:T0) (E)
6 wite(fd = x1:T0) (F)
8 wite(fd = x1:T0) (F)
9 close(fd = x1:T0) (9

Figure 12: Scenario string for the simplified scenario from kg-
ure 11.

SU/"
S dr

{t € [ta,ta] | I’ € Sa.t' reaches t}
{t € [ta,ta] | ' € S4.t’ reachesinreverse ¢}

The final scenario i$ = S,q U (Ser N Sar). Figure 10 shows a
scenario extracted from the trace in Figure 2 wifh= 10, around
theaccept on line 4. The seed is marked. Also note that the
interactions inS inherit the dependences from the annotated trace.
Simplification Given the extracted scenarios, simplification elimi-
nates all interaction attributes that do not carry a flow deleace

in any training traces. The typing inferred by the dependest-
notator (see Section 3) assigns a type to an skeleton agiitand
only if an instance of that attribute is involved in a flow degence
somewhere in atrace. So, simplification preserves an ictieraat-
tribute if and only if the corresponding skeleton attribigeyped.
Figure 11 is the simplified version of the scenario in Figude 1
Standardization Standardization converts a scenario into a sce-
nario string for the PFSA learner. Standardization impsotiee
performance of the PFSA learner by producing scenarioggrio
that similar scenarios receive similar strings.

Figure 12 shows the result of standardizing the scenariagn F
ure 11. Standardization applies two transformations: ngnaind
reordering.

Naming replaces attribute values with symbolic variablés.
Figure 12, value 7 is replaced with the symbolic natde TO, and
value 8 is replaced with the symbolic nam&: TO. Naming ex-
poses similarities between different scenarios by namimg tle-
pendences. For example, a scenario extracted around liroé 10
Figure 2 manipulates different socket values (7 and 10 &uste#

7 and 8), but naming still calls one of these valu€s TO and the
otherx1: TO.

When a value flows from one attribute to another, naming indi-
cates the dependence by assigning the same name to bdthtatri
The dependence annotation typing (section 3) guaranteg¢sith
two skeleton attributes are assigned different types,eghever
flow between instances of those attributes. Thus, naming ase
separate namespace for attributes of each type. Figurdus3 il



Original  Sp S1
1 A(x=0, y=0) [seed] E(x=0, v=1) [seed]
2 B(x=0, y=0) B(x=0, y=0)
3 C(x=0, y=0) C(x=0, y=0)

Untyped
1  A(x=x0, y=x1) E(x=x0, v=x1)
2  B(x=x0, y=x1) B(x=x0, y=x2)
3  C(x=x0, y=x1) C(x=x0, y=x2)

Typed

1  A(x=x0:TO0, y=x0:T1) E(x=x0:TO0, v=x0:T2)
2  B(x=x0:TO0, y=x0:T1) B(x=x0:TO0, y=x0:T1)
3  C(x=x0:TO, y=x0:T1l) C(x=x0:TO, y=x0:T1)

Figure 13: Two nearly equivalent scenarios and their scenan
strings, with untyped and typed naming.

Equivalent Ww
scenarios

Simplified scenarios

Scenario strings

Figure 14: Standardization, as a many-to-one mapping.

trates how separate namespaces help expose more siedldati
the PFSA learner. Lines 2 and 3 8§ and.S; are the same, but
line 1 differs in each scenario. Assume that naming assignges
to each interaction in turn, starting at the seed interactilvithout
types, naming treats lines 2 and 3 differently.

Reordering standardizes the order of scenario interaxtioh
scenario contains interactions that are partially ordeérgdiow,
anti, and output dependences. That is, each scenario ponés to
a directed acyclic graph (DAG). The order in which the intti@ns
appear in the original traces is just one legal total ordexorRer-
ing puts two scenarios with the same DAG into the same totiror
even when their trace order differs, so that a PFSA learnprds
sented with fewer distinct strings. In Figure 12, reordgswapped
thewr i t e on line 6 with ther ead on line 7.

To a PFSA learner, each interaction in a scenario string ieiye
an atomic letter. To emphasize this point, the right-hami if
Figure 12 replaces each interaction with a shorthand le§&an-
dardization uses a small number of letters to representengiet
of scenarios. Using a small alphabet increases the PFSAdesr
opportunities to find similarities in the scenario stringtso, PFSA
learners run more slowly with large alphabets.

The rest of this section discusses our standardizatiomitigoin
detail. At a high level, standardization is a many-to-onepiiag
from simplified scenarios to scenario strings (Figure 14ndér
this mapping, the preimage of a scenario string is a segaiva-
lentscenarios. Intuitively, equivalent scenarios manipuddistract
objects in the same way. In the following, we define equiveden
present our standardization algorithm, and show that adprice
characterizes the scenarios that standardization mapeteame
scenario string.

Let S = so,...,sn be a simplified scenario. Alependence-
preserving permutationf S is a permutatiors of S such that if
d(si,s:), theno(i) < o(i'). That is, the permutation does not

0 1
0-O 0-1
r0 r1

Figure 15: Equivalent scenarios.

Naive(S)
MaxSize := maximum size of a scenario
X := atotally ordered set of MaxSize symbolic names
AlIStrings =0
Permutes := all dependence-preserving permutatiotss of
Foreacho € Per nut es
Namings := all dependence-preserving namings @) from X
Foreachl’ € Nami ngs
AddT'(o(S)) to AllStrings
Return the lexicographically smallest element of AllSgsn

Figure 16: Naive standardization algorithm.

swap the source and sink of any dependence. Figure 12 dtestr
a dependence-preserving permutation that swapsehel on line
6 with thewr i t e on line 7.

A namingl" of S replaces each value #with a symbolic name,
taken from a setX. If s;.a is an attribute inS, I'(s;.a) is the
symbolic name given to that attribute Ii(S). We say thaf is
dependence-preserviiiigfor any s;.a ands,.a’, d(s;.a, syr.a’) =
I(s;.a) = T(s;.a’).

Now let So = s0,0,...,S0,n @and S1 = s1,0,...,81,n b€
two simplified scenarios.So and S; are equivalentiff there are
dependence-preserving permutatiensof So ando; of S; and
dependence-preserving namings of oo (So) andI'y of 01(S1)
such thatl'g(00(S0)) = T'1(o1(S1)) (Figure 15). In fact, the
choice ofop andT'y is not important. We assert that §, and
S1 are equivalent, then for any dependence-preservin®f So
and dependence-preservig of oo (So), there is a dependence-
preservingo: of S; and a dependence-preservifig of o1 (I'1)
such thar()(ﬂo(S())) =14 (0'1(51)).

Figure 16 presents a naive standardization algorithvai ve
tries all dependence-preserving permutations ®f and all
dependence-preserving namings of each permutation andset
the scenario string that comes firstin lexicographic ortfé¥ai ve
assignsS, and S; the same scenario string, thély and S; are
equivalent, since the algorithm has found permutations rerd-
ings that make them equal. And,S$% and.S; are equivalent, then
Nai ve generates the sam@ | St ri ngs set for both of them.
So, equivalence characterizes the preimagddedfve, as promised.
However, the running time of the algorithm is exponential x|
and|S]|.

The algorithm in Figure 17 removes the exponential behawior
| X| by considering only one standard naming for each permuted
scenario. This optimization is safe becaus§ifand.S; are equiv-
alent up to a dependence-preserving naming, then they oifilg
in their values, an®t andar dName does not depend on the iden-
tities of the values at attributes, but only on their typesl #me
dependences that they carry.

St andar dName draws names from separate name spaces for
separate types. Théet Next Name operation returns the next



Namelnteractiong)
Foreach attribute.a
Type := the type ok.a’s skeleton attribute
Value := the value at.a
NameSpace := name space for Type
If NameSpace[Value] has not been set
NameSpace[Value] := GetNextName(NameSpace)
Replace Value with NameSpace[Value]sir

StandardName{ = sq, ... , sn)

is = index of the seed i¥

Namelnteractiory; )

dist:=1

Whileis —dist >0o0ris +dist <n
If is —di st > 0 Namelnteraction(,  _qj st )
Ifis +dist <n Namelnteractiona(is Ldist)
dist :=di st +1

Better(S)
Reset all name spaces
AlIStrings =0
Permutes := all dependence-preserving permutatiorss of
Foreacho € Permut es
Snamed := StandardName((.S))
Add S,,4meq to AllStrings
Return the lexicographically smallest element of AllSgsn

Figure 17: Better standardization algorithm.

available name in a hame space in some fixed order, and regatti
name space causes it to begin again with the first name in doesp
St andar dNane names the seed interaction first, and then works
outward. Because the name of a value must be chosen cotlgisten
the constraints on haming increase as interactions arecame
teractions near seeds are most likely to be similar acrassssios,
so they are named first.

The worst-case running time &et t er is still exponential in

|S|. We can not expect to do better in the worst-case, because

Bet t er can be used to solve the DAG-isomorphism problem by
encoding arbitrary DAGs as scenarios, and DAG-isomorphsm
NP-complete. However, better performance is possiblearctm-
mon case, since trace scenarios are not arbitrary DAGs.rtitpa

lar, the interactions in a scenario have names and namduoligds.
Our final standardization algorithm (Figure 18) uses thom@es

to reduce the number of permutations it considers.

St andar di ze considers only dependence-preserving permu-
tations that put the skeletons of the interactions in thelsstgpos-
sible lexicographic order. Although there can be an expbakn
number of such orderings, there is often only one. In thag cte
set of interaction$el ect ed (line *) always has one element, and
the recursion never branches. With an appropriate impléatien
of Of Least Ki nds (which sorts the interactions), the algorithm
runs in that case in time proportionaltdog n. In our experience,
the time spent runnin@t andar di ze is an insignificant part of
the scenario extraction time.

4.2 Automaton learning

This section presents the algorithms and data structues ins
learning the specification automaton. The automatas an NFA
with edges labelled by standardized interactions, whasguage
includes the most common substrings of the scenario stemgs
tracted from the training traces, plus other strings that RFSA
learner adds as it generalizes. Automaton learning has teys s
First, an off-the-shelf learner learns a PFSA. Then, thercos-
moves infrequently traversed edges and converts the PRSAIM

O LeastSkeletonsy)
return{s € S | -3s’.skel eton of s’ precedes
skel et on of sl exicographically}

RestrictedPermutationS( Pos)
Permutes 9
Ready :={s € S | -3¢’ € S.d(s', s)}
* Selected := OfLeastKinds(Ready)
Foreachs € Sel ect ed
Rest := RestrictedPermutatioSs¢- {s}, Pos + 1)
Foreachor, € Rest
o =0, U{Pos — s}
Permutes :®Per nut es U {o'}
Return Permutes

Standardizef)
Reset all name spaces
AlIStrings =0
Permutes := RestrictedPermutations(S, 0)
Foreacho € Per mut es
Snamed = StandardName((S))
Add S, 4meq to AllStrings
Return the lexicographically smallest element of AllSgsn

Figure 18: Final standardization algorithm.
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Figure 19: A PFSA for which dropping edges with low weights
does not identify the hot core. Edge labels are omitted.

NFA.

The PFSA learner is an off-the-shelf learner [22] that Isaan
PFSA that accepts the training strings, plus other stringibe
learner is a variation on the classic k-tails algorithm [&iefly,
the k-tails algorithm works as follows. First, a retrievadd is con-
structed from the input strings. The algorithm then comgpuk
strings of length up to ki¢-string9 that can be generated from each
state in the trie. If two stateg, andg, generate the same k-strings,
they are merged. The process repeats until no more mergpesre
sible. The PFSA learner modifies k-tails by comparing howliik
two states are to generate the same k-strings.

The resulting PFSA acceptssapersetof all the strings in the
training scenarios, due to the generalizations performgdhie
learner. The paramete¥ that controls the size of the extracted
is chosen by the user to be large enough to include all of tiee-in
esting behavior. It is therefore very likely that the endshef train-
ing scenarios containninterestingbehavior. This is in fact what
we see experimentally: the typical PFSA has a “hot” core with
few transitions that occur frequently, with the core sunded by
a “cold” region with many transitions, each of which occurfré-
quently. The corer whittles away the “cold” region, leavjogt the
“hot” core.

The corer can not simply drop edges with low weights. Conside
the PFSA in Figure 19 (edge labels are not important and aie om



Simplification”* Satisfies(S, Spec)
If S'is in the language of Spec

AN

Standardization _
Language ofA Simplified scenatia Concrete scenario:

satisfyingA satisfying A Return true
Else Return false
satisfying A
Verify(T = to, ... ,tn, Spec, MaxSize)
) Loop:
Foreacht; € SeedsCf (T')
Figure 20: Scenarios that satisfyA. Size := 0

While Si ze < MaxSi ze
Scenarios :Ext ract *(¢;,Si ze)
ForeachS € Scenarios
Sstq := St andar di ze(S5)

ted). Four edges have a weight of 5, which is low comparedéo th If SatisfiesG,q, Spec)
three edges with a weight of 10000. However, any string tiihou Next Loop

this PFSA must traverse the edge out of the start state aretitjes Size :=Si ze + 1

into the end state. Despite their low weight, a string is ety Return Fails(;)

to traverse these edges than it is to traverse the edges witight

of 10000. Thus, a better measure of an edge’s “heat” is iddilik
hood of being traversed while generating a string from th&&RF
The problem of computing this measure is known asNtekov
chain problen{15]. The problem reduces to inverting a square ma-
trix with the number of rows and columns equal to the number of cegsjvely larger scenarios until it finds a satisfactory onentil

transitions in the PFSA. it reaches the maximum scenario size. Because interadtichs
After computing the heat of each edge, the corer removes all {5ce are not necessarily ordered as they were in the trpiraces,

edges below a cutoff parameter, removes unreachable $tafes e gigorithm does not use exactly the same extraction itthgor

the PFSA, and drops the frequencies on the edges. The aulti 4 the leamer. InsteaBixt r act *(;, Si ze) retumns all scenarios

Figure 21: Trace verification algorithm.

NFA, which a human can validate by inspection. seeded by; with a total of exactlySi ze ancestors and descen-
dants. The distance between the seed and its ancestorssamhede
5. VERIFICATION dants is not important.

This section discusses how verification tools can use thersin

specifications. Program verification tools distinguishgseans that 6. EXPERIMENTAL RESULTS

satisfy a specification from programs that do not. Before ae c This section presents the results of an experiment in misjeg-
discuss these tools, we must clarify what we mean by “satigfy ifications from traces of X11 programs.
specification”. We analyzed traces from programs that use the Xlib and X Toolk
Let A be a specification. By construction, the languagd abn- Intrinsics libraries for the X11 windowing system. The &acecord
tains a set of scenario strings (Figure 20). The containnmeght an interaction for each X library call and callback from thébtary
be strict since the automaton learner can introduce stiimgsA to client code. The interaction attributes include all anguts and
that are not scenario strings. Because standardizationmarg- return values of calls, plus the fields of the structures tbptesent
to-one mapping (see Figure 14), each scenario string quomnes X protocol events. The tracing tool uses the Executableirfigit
to a set of simplified scenarios. In turn, each scenariogtrorre- Library (EEL) [17] to instrument Solaris/SPARC executable
sponds to a set of concrete scenarios. Figure 20 shows theatha Traces were collected from full runs of widely distributecbp
mappings. We say that the scenarios of Figure2iisfy A. grams that use the X11 selection mechanism. We studied e se
Now letT be an interaction trace. We say tiasatisfiesA if for tion mechanism since the Interclient Communication Cotivas
every seed interactioiy € T, there is an interaction scenart, Manual (ICCCM) [25] gives English descriptions of sevenadkes
seeded by, such thatS, satisfiesA. We say that program P sat- for how well-behaved programs should use the mechanism. The
isfies a specificatiom if any interaction tracd” of P’s execution experiment concentrated on a rule that specifies how progycdm
satisfiesA. tain ownership of the selection: the rule says that a cliatiing
Constructing program verification tools for specificatiomsut- Xt OmSel ecti on or XSet Sel ecti onOaner must pass in a
side the scope of this paper, but is the subject of ongoirgareh. timestamp derived from the X event that triggered the call.

There are two ways that such a tool could work. First, the tool  Table 1 lists each program studied, its origin (either th& ¥is-
could construct a scenario that satisfiefor each interaction seed  tribution or the X11cont ri b directory), the number of static calls
encountered while simulating some abstractiorPofreporting an to the X library routines chosen as seeds, and the numbezinirig
error if no such scenario can be constructed for some seed. Al scenarios extracted from each trace. One of the authoremgath
ternatively, the tool could first translaté into an automaton that  the traces by running each program for a few minutes, whyiadr
generates traces instead of scenario strings. The traoenatdn to exercise the selection code by doing cut-and-paste tipesaas
generates all traces that satisfy The verification tool would then well as exercising as much other functionality as possibkeshort
exhaustively search for a trace that is notdinreporting an error if time.

one is found. Both sorts of tools must be able to simulate imp Specification mining depends on a sizable training set of-wel
cation and standardization. debugged traces. In our case, the number of training traess w
Figure 21 shows a trace verification algorithm (nagpragram small, and as it turned out, several contained violatiorthefule.
verification algorithm) that works in the first way. This isetlal- As a result, the miner was not able to discover the rule whaned
gorithm used in our experiments (see Section @ri fy takes on all of the programs. In order to learn the rule, we needed to

a trace, a specification, and a maximum scenario size. Ihate remove the buggy traces from the training set. We hypotkdsiz
to verify that the trace satisfies the specification by eximgcsuc- that our miner could help find the bugs, even with a poor tragni



Name Source | Static seeds| Scenarios
bitmap distrib | 1 6
xclipboard | distrib | 2 2
xconsole distrib | 1 1
xcutsel distrib | 1 4
xterm distrib | 1 6
clipboard | contrib | 1 2
cxterm contrib | 1 9
display contrib | 4 16
e93 contrib | 1 2
kterm contrib | 1 4
nedit contrib | 2 2
pixmap contrib | 1 11
rxvt contrib | 1 4
ted contrib | 3 9
testcanvas| contrib | 1 4
ups contrib | 1 3
xch contrib | 1 11

Table 1: X11 client programs studied in the experiment.

set. ldentifying the buggy traces without the miner woulguiee
inspecting each trace manually for bugs.

Using the miner, we predicted that, while we would have to in-
spect the first few traces, once a few correct traces had halen c
lected, the miner’s rule could be used to automaticallydat the
remaining traces. In this experiment, we arranged the tcpeo-
grams in random order and went through the following itemti
process:

Run the first program and gather a trace
Mine a specification from the trace
Expert examines the specification
Expert extracts hot core
If the specification is not correct
Select another random order and start over
For each remaining client program in order
Run the program and gather a trace
Verify the trace against the specification
If verification succeeds
Add the trace to the training set
Generate a new specification
Else
Examine the scenarios that failed
If no scenario violates the ICCCM rule
Add the trace to the training set
Generate a new, more general specification
Else
Report the bug

For each trace that fails to verify, the expert either matlassi
buggy or includes it in the training set. The expert decidbastiver
the initial specification is correct: in our experiment, weeepted
the initial specification if we did not see any obvious bugshia
first set of training scenarios. The expert also needs t@eixthe
hot core, since the training set is too small to use the corer.

The experiment tested three hypotheses:

Hypothesis 1 The process will find bugs and reduce the number of
traces that the expert must inspect.

Hypothesis 2 The miner’s final specification will match the rule in
the ICCCM.

Hypothesis 3 The corer and the human will agree on which states
in the final PFSA belong in the final specification.

Name Verifies? | Reason for failure | Action
xcb n/a n/a accept
bitmap no spec. too narrow | accept
ups no bug! reject

ted no spec. too narrow | accept
rxvt yes n/a accept
xterm no spec. too narrow | accept
display no spec. too narrow | accept
xcutsel no spec. too narrow | accept
kterm yes n/a accept
pixmap yes n/a accept
cxterm yes n/a accept
xconsole | no benign violation reject

nedit no spec. too narrow | accept
e93 no bug! reject

xclipboard | no benign violation reject

clipboard | no benign violation reject

Table 2: Results of processing each client program, in the oler
in which they were processed.

Table 2 lists the client programs in the order in which theyave
processed. Out of the first six traces accepted (not inctpitia ini-
tial trace), five were rejected by an overly narrow specifat At
this point, the specification seemed to stabilize: out ofine four
accepted, only one was initially rejected by the dynamidfiesr
The expert did not have to inspect 4 out of the 16 the traceikhwh
supports the second partldf/pothesis 1 We conjecture that if the
process had continued, the false rejection rate would hemtgne
ued to drop.

Five of the programs violated the rule in the ICCCM. We found
three programs with benign violations of the specificatiod awo
programs with bugs. The specification applies to programasitbe
the selection mechanism to do cut-and-paste, while theranog
with benign violations used the selection mechanism to émmgint
their own communication protocol. These violations intkcthat
the rule described by the ICCCM is not universally appliesdnhd
that the document should be clarified. Thus, the specificatimer
helped find bugs and an documentation omission (an unexpecte
benefit).

Figure 22 is the specification from the experiment. For lggib
ity’s sake, the figure omits some arguments. These argund@hts
not participate in dependences within the core of the spetidin.
The specification is compact, with six states and nine edgakso
matches the English rule very closely, with most complexzitig-
ing from the several ways in which the X API receives an event.
In addition, the specification exposes a common pattern iigtwh
the client calls XSetSelectionOwner repeatedly until X&sec-
tionOwner indicates that the call was successful.

Our final hypothesis was that the corer and the expert would
agree on which states in the final PFSA should be thrown ow. Th
final PFSA had 27 states. The expert, who did not have accéss to
corer’s results, threw out 15 of these and retained 12; tmainging
twelve were merged to form the NFA in Figure 22. The corer and
the expert disagreed on five out of the 27 states, or 19%. Tiee co
assigned likelihoods lower than 6% to 13 of the 15 deletetsta
and likelihoods higher than 13% to 9 of the 12 retained stdtke
other 2 deleted states had likelihoods of 13% and 20%, windee-
maining retained states had likelihoods of 5%, 6%, and 9%isTh

7. RELATED WORK

Ernst et al. also proposed automatic deduction of formatifipe
cations [11]. Their Daikon tool works by learning likely ifants
involving program variables from dynamic traces. The résgl



A = XNextEvent(time = X21_0)

B = XNextEvent(time = X21_0) or B = XtDispatchEvent(time = X21_0)
or B = XIfEvent(time = X21_0)

C = XtDispatchEvent(time = X21_0) or C = XtEventHandler(time = X21_0)
or C = XtLastTimeStampProcessed(time = X21_0)

D = XGetSelectionOwner

E = XSetSelectionOwner(time = X21_0)

F = XtOwnSelection(time = X21_0)

G = XtActionHookProc(time = X21_0)

H = XinternAtom

Figure 22: The NFA from the selection ownership specificatin.

formal specifications is the key difference between theprapch
and ours. Daikon’s specifications are arithmetic relatigos that
hold atspecificporogram points (e.g., a preconditioen< y at entry

to a procedurgf). By contrast, our specifications express temporal
and data-dependence relationships among calls to an APte®u
poral specifications capture a different aspect of prograhabior
than Daikon’s predicates on values and structures. The twod

of specifications are complementary, but naturally regudécally
different learning algorithms.

Recently, Ernst et al. presented techniques for suppigegsirts
of their learned specifications that are not useful to a fogr
mer [19]. In the context of our temporal specifications, tieisult
corresponds to appropriately selecting the heavy coreeoiritial
PFESA.

Another related tool is Houdini [12], an annotation assisfar
ESC/Java. Starting from an initial (Quessed) candidatefsatno-
tations, which are similar to those of Daikon, Houdini us&CE]ava
to refute invalid annotations. The focus of Houdini is on@tating
points of a single program with true properties, while theu® of
our tool is on discovering temporal properties that holdbasrall
programs that use an interface.

Other authors have described tools that extract autormzaseed
models. Cook and Wolf describe a tool for extracing FA models
of software development processes from traces of eventJ8f
work differs in that we extract specifications from programaces,
which must be reduced to a simpler form before they are palat-
able for an FA learner. Ghosh et al. describe several teaksiq
for learning the typical behavior of programs that make eyst
calls [13, 18]. Since they intend their models for intrusibetec-
tion, the models need only characterize a particular progrée-
havior, while our miner finds rules that are generally apgiie and
understandable by humans. Wagner and Dean'’s intrusiontaete
system also extracts automaton models, but from source ocote
traces [27]. Their system also extracts models that apply tmn
a single program. Finally, Reiss and Renieris also extraats

ture from traces [23], but they model the sequence of operatn
individual objects, not the data and temporal dependencess
several objects.

8. CONCLUSION

This paper addresses an important problem in the program-
verification tool-chain, namely the problem of semi-auttimfor-
mulation of correctness specifications that could be aeckepy
model checkers and other similar tools. We have formulated t
problem as a machine learning problem and provided an algo-
rithm based a reduction to finite automaton learning. Whilee
more experimental work remains ahead of us, initial expeeeas
promising.
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