Bandera : Extracting Finite-state Models from
Java Source Code

James C. Corbett
University of Hawai‘i
Department of Information
and Computer Science
Honolulu, HI 96822
+1 808 956 6107
corbett@hawaii.edu

ABSTRACT

Finite-state verification techniques, such as model
checking, have shown promise as a cost-effective means
for finding defects in hardware designs. To date, the ap-
plication of these techniques to software has been hin-
dered by several obstacles. Chief among these is the
problem of constructing a finite-state model that ap-
proximates the executable behavior of the software sys-
tem of interest. Current best-practice involves hand-
construction of models which is expensive (prohibitive
for all but the smallest systems), prone to errors (which
can result in misleading verification results), and diffi-
cult to optimize (which is necessary to combat the ex-
ponential complexity of verification algorithms).

In this paper, we describe an integrated collection
of program analysis and transformation components,
called Bandera, that enables the automatic extraction of
safe, compact finite-state models from program source
code. Bandera takes as input Java source code and gen-
erates a program model in the input language of one of
several existing verification tools; Bandera also maps
verifier outputs back to the original source code. We
discuss the major components of Bandera and give an
overview of how it can be used to model check correct-
ness properties of Java programs.

Keywords
program verification, model checking, model extraction,
slicing, abstract interpretation, program specialization

1 INTRODUCTION

In recent years, finite-state verification techniques such
as model checking have renewed interest in formal veri-
fication of computer systems. These techniques exhaus-
tively check a finite-state model of a system for vio-
lations of a system requirement formally specified in
some temporal logic (e.g., LTL [20]). This approach

To appear in the proceedings of the 2000 International
Conference on Software Engineering (ICSE 2000).

Matthew B. Dwyer, John Hatcliff, Shawn Laubach,
Corina S. Pasareanu, Robby, Hongjun Zheng

Kansas State University

Department of Computing and Information Sciences

Manhattan, KS 66506-2302
+1 785 532 6350

{dwyer,hatcliff,laubach,pcorina,robby,zheng } @cis.ksu.edu

provides a level of confidence comparable to that of
a machine-checked proof of the requirement’s correct-
ness without the extensive human guidance required by
theorem provers—once the model and property speci-
fication are constructed, the verification is fully auto-
matic, albeit potentially time-consuming. Tools sup-
porting these techniques [14,21] have matured to the
point where hardware manufacturers routinely use them
to validate their designs.

The transfer of this technology from research to practice
has been much slower for software. One reason for this
is the model construction problem: the semantic gap be-
tween the artifacts produced by software developers and
those accepted by current verification tools. Most de-
velopment is done with general-purpose programming
languages (e.g., C, C++, Java, Ada), but most verifi-
cation tools accept specification languages designed for
the simplicity of their semantics (e.g., process algebras,
state machines). In order to use a verification tool on
a real program, the developer must extract an abstract
mathematical model of the program’s salient proper-
ties and specify this model in the input language of the
verification tool. This process is both error-prone and
time-consuming.

Another obstacle to the transfer of finite-state verifica-
tion technology is the state explosion problem: the ex-
ponential increase in the size of a finite-state model as
the number of system components grows. A variety of
methods exist for curbing the state explosion when ana-
lyzing certain types of systems, and these methods have
proven sufficient to make analysis of many hardware de-
signs tractable. Unfortunately, software systems tend to
have much more state than hardware components and
thus must be more aggressively abstracted to produce
tractable models.

Recent efforts have attacked the problem of model
checking software in several ways. Some have taken
a monolithic approach by building a dedicated model
checker for a specific programming language, such as
Erlang [18]. Others have built tools, such as JCAT [4]
and Java PathFinder [13], that translate a program di-
rectly into a relatively expressive verifier input language,



in this case PROMELA, the input language of the SPIN
model checker [14].

Although these tools can be useful, we see a number of
significant limitations to these approaches. The mono-
lithic approach makes it difficult to keep the checking
engine state-of-the-art; new methods for curbing the
state explosion must be recoded in the tool’s dedicated
engine. The translation approach often results in larger
models, partly because of the mismatch between the se-
mantics of the two languages, and partly because the
translation does not consider the property being veri-
fied, thus the model cannot be customized for the prop-
erty. Both approaches tend to lock the user into a single
kind of checking technology, even though empirical stud-
ies have shown that the best analysis method varies by
program [1]. Finally, these tools have limited support
for the kinds of control/data abstraction used by human
analysts when they build models by hand (e.g., remov-
ing irrelevant program features, reducing the cardinality
of data types via symbolic abstraction).

Our goal is to overcome the major obstacles to finite-
state verification of software by using a component-based
tool architecture for model extraction based on the fol-
lowing design criteria:

e Reuse of existing checking technologies. Model
checkers, especially the most widely used ones like
SPIN and SMV [21], are extremely sophisticated
programs that have been crafted over many years
by experts in the specific techniques employed by
the tool. A reimplementation of the algorithms in
these tools would likely yield inferior performance.

o Automated support for the abstractions used by
experienced model designers. The most impor-
tant single method for extracting tractable mod-
els of software is abstraction. Thus, our toolset
should go beyond simple translation and instead be
structured like an optimizing compiler, employing
complex transformations to optimize the “perfor-
mance” (i.e., compactness) of the generated “code”
(i.e., model). The transformations should be staged
to improve their effectiveness and would rely on
static analyses (e.g., object flow analysis, depen-
dency analysis). Transformations commonly em-
ployed by human analysts and that should be sup-
ported include: slicing, abstract interpretation, and
specialization.

o Specialized models for specific properties. Rather
than construct a single model of the software sys-
tem accurate enough to verify all relevant prop-
erties, the model should be customized (i.e., op-
timized) for a particular property. Although this
is rarely done for hand-generated models (due to
the effort required), generating a custom model for

each property can significantly reduce the analysis
effort and thus enhance scalability.

o An open design for extensibility. The toolset should
consist of a number of loosely connected compo-
nents that communicate through a small set of well
documented intermediate representations, thus al-
lowing new abstraction techniques and checking en-
gines to be added easily. For example, the back end
of the toolset should have a low-level intermediate
representation that can easily be translated to the
input languages of current model checkers.

o Synergistic integration with existing testing and de-
bugging techniques. We want a toolset that comple-
ments and can be used alongside existing develop-
ment environments, which support testing and sim-
ulation. The supporting environment should en-
capsulate the details of the checking engines and
allow counterexamples found to be displayed in a
form that (7) is familiar and uniform (i.e., not spe-
cific to the model checker), and (i) can be leveraged
for testing, debugging, and simulation.

The main contribution of this paper is the description of
Bandera: a component-based model extractor for Java
programs designed to meet these goals. In particular,
we describe the major components of Bandera:

Slicer The Bandera slicing component compresses
paths in the program by removing control points,
variables, and data structures that are irrelevant
for checking a given property.

Abstraction Engine The Bandera abstraction engine
allows the user to reduce the cardinality of data sets
associated with variables. The tool also includes a
language for specifying abstractions, which can be
collected in an abstraction library for reuse.

Back End The back end of Bandera generates BIR: a
low-level intermediate language based on guarded
commands that abstracts common model checker
input languages. The back end also contains a
translator for each model checker supported.

User Interface Bandera has an advanced graphical
user interface that facilitates interaction with the
various components and displays counterexamples
to the user in terms of the program source, like a
debugger.

We also describe the application of the current imple-
mentation of Bandera (which handles a reasonably large
subset of Java) to a non-trivial program.

In the next section, we give an overview of the process of
model-checking software systems, and we summarize the
main techniques used to construct models of software.



Section 3 describes how Bandera provides automated
support for these techniques: first, the user’s view of
Bandera is presented followed by a discussion of the
internal architecture and a summary of the functionality
of each Bandaera component. Section 4 uses a small
example to illustrate model checking of Java source code
with Bandera. Section 5 discusses related work, and
Section 6 concludes.

2 MODEL CHECKING SOFTWARE

Model checking is a technique for systematically search-
ing the possible behaviors of a system for certain kinds
of errors. First, the system (in our case, a Java pro-
gram) is modeled as a finite-state transition system.
Each state represents an abstraction of the program’s
state and each transition represents the execution of one
or more statements transforming this state. Second, a
desired property of the system is expressed in tempo-
ral logic [20]; the property describes some constraint on
the permissible state/event sequences in the finite-state
model. Third, a model checking tool algorithmically de-
termines whether all paths through the finite-state tran-
sition system satisfy the property. If not, the model
checker displays a path through the transition system
violating the property; this path can be interpreted as
a behavior of the system and used to understand the
error.

Although this checking technique takes worst-case expo-
nential time, it has been used to validate crucial prop-
erties of real software systems, e.g., [12]. Properties
checked include freedom from deadlock, simple asser-
tions, state-sequencing properties, and absence of null-
pointer derefences. This success is partly due to ever
improving methods for curbing the state explosion in
model checking algorithms, but mostly due to the use
of abstraction. The key to applying model checking to
large software systems is not clever model checkers but
clever model builders that abstract away most of the
details of these programs, leaving only what is essential
to verify a specific property.

Based on our experience, we believe that there are three
main techniques that can be applied to build tractable
models for verifying a given property: irrelevant com-
ponent elimination, data abstraction, and component
restriction.

I. Irrelevant component elimination: Many of the
program components (classes, threads, variables, code)
may not be relevant to the property being verified. For
example, properties testing specific features of a pro-
gram (e.g., selecting a certain menu item always brings
up a particular dialog) are likely to be independent of
most of the application code.

II. Data abstraction: After eliminating irrelevant
components, some of the remaining variables, although

relevant, might be recording more detail than is nec-
essary for the property being verified. The range of
such variables can often be safely abstracted to a much
smaller set. For example, an application might store a
set of items in a vector, but if the property being verified
depends only on whether a particular item is in the vec-
tor, we could abstract the large number of vector states
onto a small set {ItemInVector, ItemNotIn Vector}.

ITI. Component restriction: The two techniques
above can often produce tractable models of software
systems. If these methods fail, a restricted model of
the program can usually be constructed by limiting the
number of components and/or the ranges of variables
(e.g., bounding the number of objects that can be cre-
ated by an allocator, bounding the number of total ex-
ecution steps). Restricted models do not capture all
behaviors of the program, but since many design errors
are manifest in small versions of a system, they can be
useful for finding errors [5,19].

Note that the semantic gap between systems and finite-
state models is much wider for software than for hard-
ware, and this may increase the need for component
restriction. Model checkers have highly static input lan-
guages, whereas most software is written in high-level
languages supporting a wide variety of dynamic con-
structs (e.g., unbounded heap allocation, unbounded re-
cursion, dynamic creation of threads, polymorphism).
If clever abstractions for these features cannot be de-
fined, and if bounds on the degree of dynamism in these
constructs cannot be inferred, we must construct a re-
stricted model by imposing such bounds arbitrarily.

Besides creating challenges for model building, the se-
mantic gap presents additional hurdles when diagnosing
program errors. When the model checker finds a vio-
lation of a given property, the analyst must interpret
the model checker’s violating trace through the state
transition system as a sequence of program statements.
This can be difficult if the model was obtained from the
program through many nontrivial transformations, as is
normally the case. In addition, each program step usu-
ally corresponds to many steps in the transition system.

3 BANDERA

One of the primary goals of Bandera is to provide au-
tomated support for the model-construction and error
trace interpretation techniques outlined in the previous
section. Specifically, Bandera uses slicing to automate
irrelevant component elimination, abstract interpreta-
tion to support data abstraction, and a model-generator
that allows significant flexibility in setting bounds for
various system components. Bandera also includes a
collection of data structures for automatically mapping
model-checker error traces back to the source level as
well as facilities for graphical navigation of these traces.



Abstraction Spec

class Signs extends Int {
Tokens = {Zero, Pos, Neg} 7 |

Pos+Pos -> Pos;

Restriction -
max Stage is 3;

Abstraction Binding| !
abstract Connector.queue
with Signs;

‘ Slicer

‘Abstract.ion-Based ’
Specializer

Speci fication
[1(Heap. cl. queue>0 ->

* BABS

Java Source
public class Stagel
extends Thread { - -|-
public void run() {...}
}

Jinple

Java
Front-End

JJJc

Count er exanpl e

Mai n. mai n#3: (new Stagel()) |
start();

Stagel.run#l: tnp = -1;

| | Property
<>Stagel.run:return) Front-end iPri mtive Propositi onsi
Supplementar
Analyses

i

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | = PVS
Pr oof
ol igations
Back End
| - 1-= SPIN
A {
Intermediate
Representation \Ir_ags"’”’sw
Constructor L
BIRC 'SAL \L***SAL
\Trans!
BIR-Jimple-Java Count er
———————————— Tracer T T | exanpl e

Figure 1: Bandera’s Interfaces and Internals

Figure 1 illustrates the inputs supplied to Bandera when
checking a program (a collection of . java files) against
some requirement and the internal structure of the Ban-
dera tool set. The user formalizes a requirement as,
for example, a temporal logic formula. To aid the for-
malization, Bandera provides a menu-driven selection
of specification templates from an existing template li-
brary [7]. The user completes a specification by fill-
ing in the template’s parameters with primitive propo-
sitions that describe the semantic features of the pro-
gram that the user is interested in reasoning about.
Currently, Bandera supports the definition of proposi-
tions that define a range of values for object fields that
are defined as built-in types (e.g., c1l.queue>0), and
propositions that capture locations in the source code
(e.g., Stagel.run:return— the return point of the run
method of class Stagel). From these propositions, Ban-
dera automatically derives a slicing criterion that can be
used to slice away program components irrelevant to the
property being checked. The user can subsequently, ex-
amine the remaining variables and fields of this sliced
program to decide how the data for those components
should be abstracted. Abstractions are selected from a
library and bound to those variables that the user deems
particularly needy of compaction (because of their con-
tribution to the system’s state space). As illustrated, it
is also possible for user’s to add new abstractions (e.g.,
the Signs abstraction specification). The abstraction
engine then compiles the definitions of the chosen ab-
stractions into the program, simplifies the program, and
inlines all remaining method calls. Finally, this reduced
program is fed to Bandera’s back-end which generates
a finite-state model in the input language of a chosen
verification tool. Bandera interprets verifier output and
when the property fails to hold on the generated model,
the verifier-specific counter-example is mapped back to
the user’s original source code.

The architecture of Bandera is similar to an opti-

mizing compiler. Compler’s use multiple intermedi-
ate languages to stage the transformation to machine
code, Bandera uses multiple intermediate languages to
stage the transformation from Java to model-checker in-
put languages. The Bandera front-end translates Java
to a a high-level intermediate language called Jimple;
the Bandera back-end generates model-checker inputs
from a low-level intermediate language of guarded com-
mands called BIR (Bandera Intermediate Representa-
tion). Just as a conventional compiler relies on sophis-
ticated static analyses and transformations to produce
optimized code, Bandera relies on conventional data-
flow, control-flow and dependency analyses, slicing and
specialization transformations, as well as several sup-
plementary analysis to produce compact models. Below
we summarize the functionality of each of the Bandera
components and intermediate representations.

Soot/Jimple

Bandera is built on top of the Soot compiler frame-
work developed by the Sable group at the University of
McGill [23]. In the Soot framework, Java programs are
translated to the intermediate language Jimple — one of
several intermediate languages supported by Soot. We
have developed our own front-end called JJJC (Java-to-
Jimple-to-Java Compiler) that maintains a tight corre-
spondence between a Java source program and its Jim-
ple representation. Given a node in a program’s Jim-
ple representation, JJJC can return the corresponding
node in the Java abstract syntax tree (AST) for the
program (and vice versa). These bi-directional map-
pings, together with similar mappings for our other
intermediate language BIR, facilitate the mapping of
model-checker counter-example traces back to source
code traces. Downstream components such as the slicer
and specializer that transform the Jimple representation
must be careful to maintain the mappings. For instance,
the specializer performs inlining which duplicates the
bodies of some methods. Thus, after specialization, a



single Java source node may map to multiple points in
the Jimple representation. Similarly, the slicer removes
nodes from the Jimple representation. Thus, the map-
ping from Java to Jimple must be modified to indicate
the corresponding Jimple node has been sliced away.

Slicer

Given a program P and some statements of interest
C = {s1,...,8;} from P called the slicing criterion,
a program slicer will compute a reduced version of P by
removing statements of P that do not affect the compu-
tation at the criterion statements C. When checking a
program P against a specification ¢, Bandera uses slic-
ing to remove the statements of P that do not affect the
satisfaction of ¢. Thus, the specification ¢ holds for P
if and only if ¢ holds for the reduced version of P (i.e.,
the reduction of P is sound and complete with respect

to ¢) [11].

In recent work [11], we showed that the slicing transfor-
mation can driven by generating a slicing criterion Cy
based only on the primitive propositions in ¢. As an
example, consider the LTL response specification from
Figure 1. This property states that along all paths,
if execution reaches a point where the queue field of
the Heap.cl object has a value greater than 0, then
eventually the return point of the run method of class
Stagel will be reached. From this specification, Ban-
dera generates a slicing criterion, containing the return
statement of method Stagel.run as well as all state-
ments that contain assignments to Heap.c1.queue. The
slicing algorithm guarantees the preservation of all pro-
gram components that can affect (1) the values assigned
to Heap.cl.queue as well as (2) the relative order of
execution of Stagel.run’s return and assignments to
Heap.cl.queue.

Building a slicer for Java requires a significant amount
of effort. Fortunately, except for issues surrounding
Java’s concurrency primitives we were able to carry
out most of the development using previously devel-
oped slicing techniques based on program dependence
graphs, e.g., [17]. In recent work, we gave a formal
presentation of slicing that includes additional notions
of dependence that arise in Java’s concurrency model
[8]. These includes dependencies due to possibly in-
finite delays in waiting for locks or notification wvia
Java’s notify/notifyall, data dependencies due to ac-
cess/definition of shared variables, and dependencies be-
tween program statements and the monitor delimiters
that enclose them.

The effectiveness of slicing for reducing program mod-
els varies depending on the structure of the program. In
some systems that we have considered, slicing removes
entire threads and dramatically reduces the state space.
In other cases, where program components are tightly

coupled or where large sections of the program are rel-
evant to the specification, the slicing reduction is only
moderate. However, since slicing is cheap compared to
the overall cost of model-checking and since it is totally
automatic, we almost always use Bandera with the slic-
ing option enabled.

Abstraction-Based Specializer

The Bandera Abstraction-Based Specializer (BABS)
provides automated support for reducing model size
via data abstraction. This is useful when a speci-
fication to be checked does not depend on the pro-
gram’s concrete values but instead depends only on
properties of those values. For example, as described
in the previous section, a vector can be abstracted
to {ItemInVector, ItemNotIn Vector} if the specification
depends only on a particular item being in the vector.

Given an appropriate definition of an abstraction, the
specialization engine will transform the source code into
a specialized version where all concrete operations and
tests on the relevant vector objects (e.g., method calls
on the vector class) are replaced with abstract versions
that manipulate tokens representing the abstract values
{ItemInVector, ItemNotInVector}. Since information is
lost in this transformation, operations and tests that re-
lied on the lost information can no longer be determined
completely in the abstract program. For instance, in the
vector example the length of the abstracted vector can-
not be determined. Values that cannot be determined
are represented with a special token T. When a T token
flows into the test of a conditional expression in the ab-
stract program, the specialization engine inserts a flag
that informs the downstream model construction com-
ponents to implement the test as a non-deterministic
choice between the true and false branches.

The user guides BABS in incorporating abstractions by
binding variables to entries from an abstraction library.
The library entries are indexed by concrete type, and
each entry implements an abstract version of its corre-
sponding concrete type. Since abstractions are incor-
porated on a per variable basis, two different variables
of the same concrete type can have different abstract
types. For example, if I; and I, are both int abstrac-
tions, then variable int x may be bound to I; and vari-
able int y may be bound to I>. After the user has cho-
sen abstractions for relevant variables, a type inference
phase propagates this information throught the program
and infers abstraction types for the remaining variables
and for each expression in the program. Type inference
also informs the user when there is an abstraction type
error.

Each abstraction library entry is automatically gener-
ated from a high-level description written in the Ban-
dera Abstraction Specification Language (BASL). In its



most general form, a BASL specification consists of a
declaration of a finite set of abstract tokens, an abstrac-
tion function that maps each concrete Java value to an
abstract token, and an abstract operation for each op-
eration (method) of the concrete type (class). A rule-
based format that incorporates pattern matching sim-
plifies the definition of abstract operations. We have
used BASL to define abstractions for integers, e.g., gen-
eral forms of range abstractions, such as an abstraction
that preserves an integer’s sign, and modulo abstrac-
tions, such as an even-odd abstraction. We have recently
designed an extension to BASL that supports abstrac-
tions for arrays, strings, and general objects.

From each operation in a BASL specification, the BASL
compiler generates a rather sophisticated Java imple-
mentation that includes code to propagate abstract to-
kens as well as code to generate specialized versions
of the operation if the operation cannot be completely
symbolically executed. For abstractions over primitive
types, the BASL compiler also generates declarations
and correctness proof obligations for the theorem prover
PVS [22]. Interestingly, PVS can prove the correctness
of these BASL specifications completely automatically
using it’s “grind” facility. We are currently experiment-
ing with generating PVS descriptions for abstractions
for non-primitive types.

The design of BASL and the transformations imple-
mented by BABS are grounded in the rigorously devel-
oped framework of abstract interpretation [3]. In previ-
ous work, we have formalized and proven the correctness
of a simplified version of the abstraction-based special-
ized engine [9]. Despite this solid formal foundation,
BASL is designed with a compact notation that shields
the user from the technical machinery of abstract in-
terpretation, thereby allowing even non-expert users to
add abstractions to the Bandera’s abstraction library.

Back End

The Bandera back end is like a code generator, tak-
ing the sliced and abstracted program and produc-
ing verifier-specific representations for targetted veri-
fiers. The back end components communicate through
BIR, the Bandera Intermediate Representation, an in-
termediary between compiler-based representations and
verifier-based representations. As shown in Figure 1, the
back end has one fixed component called BIRC (Ban-
dera Intermediate Representation Constructor) that ac-
cepts a restricted form of Jimple and produces BIR. For
each supported verifier, there is also a translator compo-
nent that accepts the program represented in BIR and
generates input for that verifier. A translator for SPIN
is complete, and translators for SMV and Stanford’s
forthcoming SAL model checker are under construction.

BIR is a guarded command language for describing state

transition systems. The main purpose of BIR is to pro-
vide a simple interface for writing translators for tar-
get verifiers—to use Bandera with a new verifier, one
must only write a translator from BIR to the input lan-
guage of the verifier. The guarded command style of
BIR meshes well with the input languages of existing
model checkers.

BIR contains some higher-level constructs to facilitate
modeling Java, such as threads, Java-like locks (sup-
porting wait /notify), and a bounded form of heap allo-
cation. Rather than choose an implementation of these
constructs and remove them from BIR (e.g., model a
lock as a boolean variable), we allow the translators
to implement these constructs in whatever way is most
efficient in the verifier input language. BIR also pro-
vides other kinds of information that can aid transla-
tors in producing more compact models. For example,
a guarded command can be labeled invisible, indicating
that it can be executed atomically with its successor.
The set of local variables that are live at each control
location can be specified (dead variables can be set to a
fixed value for SPIN or left unconstrained for SMV).

BIRC translates a subset of Jimple to BIR. Java locals
and instance variables are mapped onto BIR state vari-
ables and record fields. The Jimple statement graph is
traversed to construct a set of guarded commands for
each thread. Each guarded command is marked as vis-
ible/invisible based on the kind of data accesses (e.g.,
operations on locals are invisible). BIRC also accepts a
set of expressions used to define primitive propositions
in the model (e.g., a thread is at a specific statement, a
variable has a given value). BIRC embeds these propo-
sition definitions into the BIR and insures that any pro-
gram statement that changes the value of one of these
primitive propositions will cause a visible state change
in the model.

The SPIN translator accepts a BIR representation and
produces a PROMELA model of the system, suitable
for input to the SPIN model checker. PROMELA
is quite expressive and has the same basic execu-
tion model as BIR (asynchronous processes executing
guarded commands), thus the translation is straight-
forward. PROMELA atomic blocks are used to col-
lapse sequences of invisible commands. Locks are imple-
mented using a struct containing the lock state, owner,
acquisition count, and wait set.

Supplementary Analyses

The effectiveness of each of the Bandera components
can be improved with the aid of additional static anal-
ysis results. Bandera is designed to allow the integra-
tion of a variety of analyses whose results can be used
to boost the precision of the primary model extraction
transformations so as to produce more accurate and



Formalis m: Pattern: Scope:
| LTL - | | Ahsence w | | Globally -

ow
‘P v| Main roaind 11

File 11IC Property Slice

[[10! (Main main#11]]]

Abstract  EIRC  Checker Ezxecute  Help

New
| Expand
® <default package>
OtiMain.main#11)) o Connector
® Main

void maind
% Main(
o Stagel
@ % Heap

@ Connector <1

|public static void main(

Heap . c1 = new Connector ()

[ new Stagel (1), start ()

for (inti=1;i<10; i+

Heap . c1 . add (1) Source Window

Heap . c1.stop {3

1=

[*]

seep 9 0f155  Counter Example Window

Reset || Step back || Step forward || Close |

) Ban;llera

Figure 2: Bandera

compact models. Examples of these analyses include
a lock safety analysis [8] whose results can be used to
refine the inter-thread dependences used in slicing, and
a highly-parameterized object flow analysis that com-
putes information about the object values flowing to
selected program points that can also be used to refine
dependences as well as to guide enable precise inlining
of methods.

4 MODEL CHECKING JAVA PROGRAMS
The Bandera toolset provides both a command-line and
a graphical user interface, called the Bandera User In-
terface (BUI), for configuring the model extraction pro-
cess. Figure 2 illustrates several of the BUT’s features in-
cluding: source-level code views of the results of apply-
ing the different Bandera components, e.g., sliced code
is faded, support for writing formal specifications based
on specification patterns [7], e.g., the global-absence
property, and support that allows users to view counter-
example information by navigating through the source-
code statements. In addition the BUI allows users to
control the abstractions used in model extraction and to
configure the run-time options for the verifier that they
select. We view the BUI as an interactive interface for
configuring model extractions, configuration options set
with the BUI can be dumped for input to the command-
line interface so that an extraction can be run repeatedly
as the code changes.

In the remainder of this Section, we describe the ap-
plication of Bandera to check several properties of a
multi-threaded Java program.

Applying Bandera
Bandera’s collection of analysis and transformation

User Interface

components can applied in a variety of different ways
to extract a finite-state model from Java source code.
From initial experience using Bandera on several Java
programs we have found that is always desireable to
slice and that it is relatively easy to pinpoint variables
for abstraction. Furthermore, even though selection of
optimal abstractions, i.e., ones that give maximal re-
duction but preserve the property being checked, is a
difficult problem, initial experience suggests that even
naive abstraction choices are often effective. Thus, our
basic model extraction scenario involves slicing based
on the property followed by abstraction and model gen-
eration.

We applied the basic model extraction scenario to an-
alyze properties of the program, given in Figure 3,
that implements a pipelined computation, where each
pipeline stage executes as a separate thread. Stages
interact through Connector objects that provide meth-
ods for adding and takeing data; these methods are
typical of one form of conditional wait-notify syn-
chronization in Java programs. The main method con-
structs Connectors, then creates and starts Stages and
Listener objects that implement the stages.

This code is slightly different from the Java code one
might typically implement to solve this problem. These
differences reflect limitations in the current Bandera
toolset that will be lifted in the next few months as ad-
ditional tool capabilities are integrated. Currently each
instance of a Thread object is converted to a separate
class. Program specialization is used to unroll loops that
contain constructor calls on Thread objects, and their
subtypes, and to specialize the per-object run methods



class Heap {
static Connector ci1,c2,c3,c4;

class Connector {
public int queue

} public synchronized int take() {

int value;
class Main {
static public void main (
String argv[]) {

Heap.cl = new Connector(); value = queue;
Heap.c2 = new Connector(); queue = -1;
(new Stagel()).start(); return value;

Heap.c3 = new Connector(); }
(new Stage2()).start();
Heap.c4 = new Connector();
(new Stage3()).start();
(new Listener()).start(); }
for (int i=1; i<10; i++)
Heap.cl.add(i);
Heap.cl.stop(); *

} }
} }

queue = o;
notifyAll();

queue = 0;
notifyAl1();

while ( queue < 0 )
try { waitQ; }
catch (InterruptedException ex) {}

public synchronized void add(int o) {

public synchronized void stop() {

class Stagel extends Thread {
public void run() {
int tmp = -1;
while (tmp != 0)
if ((tmp=Heap.cl.take()) != 0)
Heap.c2.add(tmp+1) ;
Heap.c2.stop();
} *x
}
class Stage2 extends Thread {...}
class Stage3 extends Thread {...}
class Listener extends Thread {
public void run() {
int tmp = -1;
while (tmp != 0)
if ((tmp=Heap.c4.take()) != 0)
System.out.println(
"output is " + tmp);

Figure 3: Threaded Pipeline in Java

based on values of constructor parameters. In the code
in Figure 3, this results in four copies of the Stage class
with run methods that explicitly reference their input
and output Connectors, which have been converted to
static fields using techniques from [10]. For non-Thread
objects, dynamic allocation is supported up to a fixed
number of instances, but garbage collection of instances
is not supported.

We checked two kinds of properties for this system re-
lated to the proper shutdown of pipelined computa-
tions. The properties specify (%) the eventual shutdown
of a pipeline stage in response to a call to stop on the
pipeline’s input Connector and (i) that a stage does
not prematurely shutdown. For Stagel property (%) is
expressed as a global, response property in LTL as:

O(Heap.cl.stop() — < Stagei.run:return )
and property (4) is expressed as a global, precedence
property in LTL as:

<& Heap.cl.stop() — (- Stagei.run:return U

( Heap.cl.stop() A— Stagei.run:return))

The primitive propositions in these formula are ex-
pressed as collections of locations in the source code
and are indicated by the *s in Figure 3. The BUI al-
lows users to point-and-click to identify such locations,
in Figure 2 the last line of main was selected (its line
number, 11, appears in the LTL formula).

Table 4 shows data for checking several of the proper-
ties described above using Bandera. The table gives the
total time required to extract the model from code, to
check that model on the property using SPIN, the result
of the model check, and the number of states searched.
The times given are user plus system time, rounded to
the nearest second, for Bandera 0.3 and SPIN 3.3.5 run-
ning on a 450 Mhz Pentium IT Xeon running Linux. We
used two variations of the program: the code in Figure 3
is the basic version (b) and a defective variant was cre-
ated by inverting Stage1’s loop exit condition (d). The

properties are instances of the response (r) and prece-
dence (p) properties from above indexed by the stage
number. Three different extractions were tried using no
transformations (n), slicing (s) and slicing and abstrac-
tion (a). We identify a problem by using the letter for
the problem, property and extraction, e.g., “b,r1,n” is
the response property for Stagel checked on a model
extracted from the basic program with no transforma-
tions.

The data shows the benefits of property-directed slicing
and abstraction in model extraction. We performed a
single transformation-less extraction, which essentially
transliterates the program to Promela and checks it with
SPIN. Sliced extractions are driven completely automat-
ically off of the temporal logic specification. Slicing on
property (rl) is able to eliminate all of the components
shown in the faded font in Figure 3. As the data in-
dicates this yields dramatic performance improvement,
but that the improvement is dependent on the prop-
erty being checked. The response property for Stage?2
requires that the run method for that class and the
Heap.c2 variable be included in the slice. Only one
abstraction was applied for this program. The queue
field of the Connector object is abstracted to Signs
which manipulates tokens Neg, Zero, Pos and T. The
collapsing of data states with this abstraction further
reduces the state space and check times. In fact, for
the properties we checked, the models extracted with
abstraction do not depend on the number or size of the
values added to the pipeline in the main loop. Since
slicing is driven off the propositions in the specification,
and not its structure, the models for (b,rl) and (b,pl)
are the same although the structure of the property has
a small impact on state space and check time. Finally,
the extracted models for (d,rl) illustrate that the model
extraction process preserves defects in the source code.

In summary, this data illustrates how Bandera can sup-



Problem | Extract Check | Check States
Time (s) | Time (s) | Result

b,rl,n 24 2674 true | 7338120
b,rl,s 13 4 true 3478
b,rl,a 15 4 true 895
b,r2,s 13 56 true 528059
b,r2,a 16 11 true 27519
b,pl,s 13 4 true 2507
b,pl,a 15 4 true 331
d,rl,s 13 3 false 88
d,rl,a 15 2 false 17

Figure 4: Bandera Pipeline Data

port scaling the application of verification tools. Since
the complexity of the algorithms used in Bandera are
typically much lower than the complexity of most finite-
state verification algorithms, in practice, this should al-
low properties of significantly larger systems to be ver-
ified.

Extraction of compact models is crucial for practical
application of finite-state verification to software. Con-
cise presentation of diagnostic information provided by
verifiers is just as important. For example, the 159
statement long counter-example that is being navigated
through in Figure 2 corresponds to a 1780 step counter-
example in the underlying Promela model.

Here we reported data for a Connector with a capacity
of one value implemented as a single integer. We have
applied Bandera to versions of this program where the
Connector is implemented as a circular buffer of fixed
size and as an instance of java.util.Vector. In both
these latter cases, the arrays that store the actual val-
ues could be sliced away, leaving only the fields that de-
termine emptiness; these fields appear in the condition
used for waiting to take values from the Connector.

5 RELATED WORK

There has been a significant amount of activity in the
past years on attempting to provide tool support for the
translation of software system descriptions to the input
languages of verification tools. There are three major
efforts in this area: JavaPathFinder [13], JCAT [4], and
Feaver [16].

The first two tools transliterate Java programs to
Promela programs. Since Promela is a very rich model
description language the semantic gap is not nearly as
great as for some other model checker input languages,
e.g., SMV. Each of these tools handle a significant por-
tion of Java including dynamic object allocation, object
references, exception processing, and inheritence. The
weakness of these tools is their inability to significantly
compress the Promela program based on the property

to be checked, so as to enable tractable model check-
ing for non-trivial programs. This is one of the major
design goals of Bandera.

Feaver is a system for extracting Promela programs from
annotated C programs for checking with SPIN. Feaver
allows the user to configure the extraction process by
defining pairs of C and Promela code patterns. When
the C pattern is detected, the Promela pattern is instan-
tiated and output. In this way, the user can control the
abstraction process, but there is no assurance about the
information that is encoded in the model since the pat-
terns have no semantics attached to them. Nevertheless,
users can debug their patterns over a period of time and
the resulting model extraction process has proven effec-
tive for production C programs in telecommunications
applications.

Huch [18] has built a dedicated model-checker for a
subset of Erlang — an untyped higher-order concurrent
functional language with asynchronous communication
primitives. For state space reduction, he uses a sin-
gle abstract interpretation that approximates the set
of data constructors that flow into expressions at run-
time. When one restricts the recursion in programs
to a reasonable generalization of tail-recursion, the ab-
stract interpretation is guaranteed to give a finite-state
model. Given such a model, properties such as mutual
exclusion and absence of deadlock and livelock can be
checked. Given the untyped nature of the language, it
is not clear to us how would one obtain more effective
abstract interpretation by using multiple abstractions
tailored to given specifications rather than the single
uniform abstraction used by Huch. However, the tech-
niques used to treat recursion might be used for Java.
Huch gives some of the same advantages and disadvan-
tages of this monolithic approach that we noted in the
introduction. For example, he notes that he must recode
model-checking optimizations such as partial-order re-
ductions in his system. However, he argues that work-
ing at the level of Erlang instead of e.g., a generated
Promela description, will allow easier detection of the
cases where such optimizations can be applied.

Several model checking tools have begun to apply tradi-
tional compiler optimizations, such as dead code elimi-
nation and live-variable analyses, to optimize the check-
ing process [6,15]. Bandera incorporates a sophisti-
cated infra-structure for implementing such analyses
and transformations. We plan to use this infra-structure
to enable importation of techniques developed in com-
piler research to experiment with model extraction for
programs with recursive data and methods, e.g., by ex-
ploiting shape analyses [2].

6 CONCLUSIONS
We have described the design and implementation of



Bandera: a tool for model checking Java source code.
Bandera uses a component-based architecture for model
extraction designed to maximize scalability, flexibility,
and extensibility. We have discussed how several tech-
nologies that have been well-studied in software engi-
neering and programming languages research can be
adapted and integrated to provide an effective model
extraction capability. The current implementation can
handle a realistic, albeit limited, class of Java programs
and we have illustrated the potential for model extrac-
tion to enable finite-state verification of source code.

We are currently working to enrich the features sup-
ported by Bandera in anticipation of a general pub-
lic release of the toolset in the summer of 2000 (see
http://www.cis.ksu.edu/ santos/bandera for addi-
tional information about Bandera and the current state
of the toolset). This work involves, for example, han-
dling more features of Java (e.g., interfaces, user-thrown
exceptions), integrating support for abstracting entire
classes, rather than abstracting the individual fields
of the class, and supporting additional verifiers (e.g.,
Stanford’s forthcoming SAL model checker and CMU’s
bounded satisfiability model checker).

By providing automated support for extracting compact
finite-state models of source code, tools like Bandera
lower the barriers to applying model checking to soft-
ware. We hope this will facilitate the transfer of this
technology from research to practice and provide devel-
opers with a very powerful tool for error detection.

ACKNOWLEDGEMENTS

The authors would like to thank David Schmidt and
George Avrunin for numerous discussions about the
foundations for and design of Bandera. This work was
supported in part by NSF under grants CCR-9407182,
CCR-9703094, CCR-9708184 and CCR-9901605, and by
NASA under grant NAG-02-1209.

REFERENCES

[1] J. C. Corbett. Evaluating deadlock detection methods for
concurrent software. IEEE Transactions on Software Engi-
neering, 22(3), Mar. 1996.

[2] J. C. Corbett. Constructing compact models of concurrent
Java programs. In M. Young, editor, Proceedings of the 1998
International Symposium on Software Testing and Analysis

(ISSTA). ACM Press, March 1998.

P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM Symposium on Principles of Program-
ming Languages, pages 238-252, 1977.

C. Demartini, R. Iosif, and R. Sisto. A deadlock detection
tool for concurrent Java programs. Software - Practice and
Ezperience, 29(7):577-603, July 1999.

D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In IEEFE International
Conference on Computer Design, October 1992.

10

[6]

(7]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

20]
21]

(22]

(23]

Y. Dong and C. Ramakrishnan.
piler for efficient model checking.
FORTE/PSTV’99, Nov. 1999.

M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property
specifications for finite-state verification. In Proceedings of
the 21st International Conference on Software Engineering,
May 1999.

J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and
H. Zheng. A formal study of slicing for multi-threaded pro-
grams with JVM concurrency primitives. In Proceedings of
the 6th International Static Analysis Symposium (SAS’99),
Sept. 1999.

J. Hatcliff, M. B. Dwyer, and S. Laubach. Staging static
analysis using abstraction-based program specialization. In
LNCS 1490. Principles of Declarative Programming 10th In-
ternational Symposium, PLILP’98, Sept. 1998.

J. Hatcliff, M. B. Dwyer, S. Laubach, and N. Muhammad.
Specializing configurable systems for finite-state verification.
Technical Report 98-4, Kansas State University, Department
of Computing and Information Sciences, 1998.

An optimizing com-
In Proceedings of

J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for
model construction. Higher-order and Symbolic Computa-
tion, 2000. to appear.

K. Havelund, M. Lowry, and J. Penix. Formal analysis of a
space craft controller using SPIN. In Proceedings of the 4th
International SPIN Workshop, Nov. 1997.

K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer, 1999. to appear.

G. J. Holzmann. The model checker SPIN. IEEE Transac-
tions on Software Engineering, 23(5):279-294, May 1997.

G. J. Holzmann. Engineering a model checker : The Gnu
i-protocol case study revisited. In Theoretical and Applied
Aspects of SPIN Model Checking (LNCS 1680), Sept. 1999.

G. J. Holzmann and M. H. Smith. Software model check-
ing : Extracting verification models from source code. In
Proceedings of FORTE/PSTV’99, Nov. 1999.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26-60, Jan. 1990.

F. Huch. Verification of Erlang programs using abstract
interpretation and model checking. In Proceedings of the
Fourth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’99), pages 261-272, Sept. 1999.

D. Jackson and C. A. Damon. Elements of style: Analyzing
a software design feature with a counterexample detector.
IEEE Transactions on Software Engineering, 22(7):484-495,
July 1996.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer-Verlag, 1991.

K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In Proceedings of the 1th International
Conference on Automated Deduction (LNCS 607), 1992.

R. Valle-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization frame-
work. In Proceedings of CASCON’99, Nov. 1999.



