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ABSTRACT

In unit testing, a program is decomposed into units which
are collections of functions. A part of unit can be tested
by generating inputs for a single entry function. The en-
try function may contain pointer arguments, in which case
the inputs to the unit are memory graphs. The paper ad-
dresses the problem of automating unit testing with mem-
ory graphs as inputs. The approach used builds on previous
work combining symbolic and concrete execution, and more
specifically, using such a combination to generate test in-
puts to explore all feasible execution paths. The current
work develops a method to represent and track constraints
that capture the behavior of a symbolic execution of a unit
with memory graphs as inputs. Moreover, an efficient con-
straint solver is proposed to facilitate incremental generation
of such test inputs. Finally, CUTE, a tool implementing the
method is described together with the results of applying
CUTE to real-world examples of C code.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Reliability, Verification

Keywords: concolic testing, random testing, explicit path
model-checking, data structure testing, unit testing, testing
C programs.

1. INTRODUCTION

Unit testing is a method for modular testing of a pro-
grams’ functional behavior. A program is decomposed into
units, where each unit is a collection of functions, and the
units are independently tested. Such testing requires speci-
fication of values for the inputs (or test inputs) to the unit.
Manual specification of such values is labor intensive and
cannot guarantee that all possible behaviors of the unit will
be observed during the testing.

In order to improve the range of behaviors observed (or
test coverage), several techniques have been proposed to au-
tomatically generate values for the inputs. One such tech-
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nique is to randomly choose the values over the domain of
potential inputs [4,8,10,21]. The problem with such random
testing is two fold: first, many sets of values may lead to the
same observable behavior and are thus redundant, and sec-
ond, the probability of selecting particular inputs that cause
buggy behavior may be astronomically small [20].

One approach which addresses the problem of redundant
executions and increases test coverage is symbolic execu-
tion [1,3,9,22,23,27,28,30]. In symbolic execution, a pro-
gram is executed using symbolic variables in place of con-
crete values for inputs. Each conditional expression in the
program represents a constraint that determines an execu-
tion path. Observe that the feasible executions of a program
can be represented as a tree, where the branch points in a
program are internal nodes of the tree. The goal is to gen-
erate concrete values for inputs which would result in differ-
ent paths being taken. The classic approach is to use depth
first exploration of the paths by backtracking [14]. Unfor-
tunately, for large or complex units, it is computationally
intractable to precisely maintain and solve the constraints
required for test generation.

To the best of our knowledge, Larson and Austin were
the first to propose combining concrete and symbolic exe-
cution [16]. In their approach, the program is executed on
some user-provided concrete input values. Symbolic path
constraints are generated for the specific execution. These
constraints are solved, if feasible, to see whether there are
potential input values that would have led to a violation
along the same execution path. This improves coverage
while avoiding the computational cost associated with full-
blown symbolic execution which exercises all possible exe-
cution paths.

Godefroid et al. proposed incrementally generating test
inputs by combining concrete and symbolic execution [11].
In Godefroid et al.’s approach, during a concrete execution,
a conjunction of symbolic constraints along the path of the
execution is generated. These constraints are modified and
then solved, if feasible, to generate further test inputs which
would direct the program along alternative paths. Specifi-
cally, they systematically negate the conjuncts in the path
constraint to provide a depth first exploration of all paths
in the computation tree. If it is not feasible to solve the
modified constraints, Godefroid et al. propose simply sub-
stituting random concrete values.

A challenge in applying Godefroid et al.’s approach is to
provide methods which extract and solve the constraints
generated by a program. This problem is particularly com-
plex for programs which have dynamic data structures using



pointer operations. For example, pointers may have aliases.
Because alias analysis may only be approximate in the pres-
ence of pointer arithmetic, using symbolic values to precisely
track such pointers may result in constraints whose satisfac-
tion is undecidable. This makes the generation of test in-
puts by solving such constraints infeasible. In this paper, we
provide a method for representing and solving approzimate
pointer constraints to generate test inputs. Our method is
thus applicable to a broad class of sequential programs.

The key idea of our method is to represent inputs for the
unit under test using a logical input map that represents all
inputs, including (finite) memory graphs, as a collection of
scalar symbolic variables and then to build constraints on
these inputs by symbolically executing the code under test.

We first instrument the code being tested by inserting
function calls which perform symbolic execution. We then
repeatedly run the instrumented code as follows. The logi-
cal input map Z is used to generate concrete memory input
graphs for the program and two symbolic states, one for
pointer values and one for primitive values. The code is run
concretely on the concrete input graph and symbolically on
the symbolic states, collecting constraints (in terms of the
symbolic variables in the symbolic state) that characterize
the set of inputs that would (likely) take the same execution
path as the current execution path. As in [11], one of the
collected constraints is negated. The resulting constraint
system is solved to obtain a new logical input map Z' that
is similar to Z but (likely) leads the execution through a
different path. We then set Z = Z’ and repeat the process.
Since the goal of this testing approach is to explore feasi-
ble execution paths as much as possible, it can be seen as
Explicit Path Model-Checking.

An important contribution of our work is separating
pointer constraints from integer constraints and keeping the
pointer constraints simple to make our symbolic execution
light-weight and our constraint solving procedure not only
tractable but also efficient. The pointer constraints are con-
ceptually simplified using the logical input map to replace
complex symbolic expressions involving pointers with sim-
ple symbolic pointer variables (while maintaining the precise
pointer relations in the logical input map). For example, if
p is an input pointer to a struct with a field £, then a
constraint on p->f will be simplified to a constraint on fo,
where fy is the symbolic variable corresponding to the input
value p->f. Although this simplification introduces some ap-
proximations that do not precisely capture all executions, it
results in simple pointer constraints of the form x = y or
x # y, where z and y are either symbolic pointer variables
or the constant NULL. These constraints can be efficiently
solved, and the approximations seem to suffice in practice.

We implemented our method in a tool called CUTE
(Concolic Unit Testing Engine, where Concolic stands
for cooperative Concrete and symbolic execution). CUTE
is available at http://osl.cs.uiuc.edu/~ksen/cute/.
CUTE implements a solver for both arithmetic and pointer
constraints to incrementally generate test inputs. The solver
exploits the domain of this particular problem to implement
three novel optimizations which help to improve the testing
time by several orders of magnitude. Our experimental re-
sults confirm that CUTE can efficiently explore paths in C
code, achieving high branch coverage and detecting bugs. In
particular, it exposed software bugs that result in assertion
violations, segmentation faults, or infinite loops.

typedef struct cell {
int v; p\ X

struct cell *next;
’ . NULL
} cell; Input 1:
int p NULL
£(int v) { X
return 2*v + 1; Input 2: n
}

. NULL
int p X
testme(cell *p, int x) { | 3

if (x > 0) nput 3 "

if (p != NULL)
if (£(x) == p->v)
if (p->next == p)

P X
ERROR; 0wt 4
return 0; wus (s | ]
}

Figure 1: Example C code and inputs that CUTE
generates for testing the function testme

This paper presents two case studies of testing code using
CUTE. The first study involves the C code of the CUTE
tool itself. The second case study found two previously un-
known errors (a segmentation fault and an infinite loop)
in SGLIB [25], a popular C data structure library used in
a commercial tool. We reported the SGLIB errors to the
SGLIB developers who fixed them in the next release.

2. EXAMPLE

We use a simple example to illustrate how CUTE performs
testing. Consider the C function testme shown in Figure 1.
This function has an error that can be reached given some
specific values of the input. In a narrow sense, the input
to testme consists of the values of the arguments p and
x. However, p is a pointer, and thus the input includes the
memory graph reachable from that pointer. In this example,
the graph is a list of cell allocation units.

For the example function testme, CUTE first non-
randomly generates NULL for p and randomly generates 236
for x, respectively. Figure 1 shows this input to testme. As
a result, the first execution of testme takes the then branch
of the first if statement and the else branch of the second
if. Let po and zo be the symbolic variables representing the
values of p and x, respectively, at the beginning of the ex-
ecution. CUTE collects the constraints from the predicates
of the branches executed in this path: zo > 0 (for the then
branch of the first if) and po = NULL (for the else branch of
the second if). The predicate sequence (xzq > 0, pg = NULL)
is called a path constraint.

CUTE next solves the path constraint (xo > 0,po #
NULL), obtained by negating the last predicate, to drive
the next execution along an alternative path. The solu-
tion that CUTE proposes is {po +— non-NULL, zo — 236},
which requires that CUTE make p point to an allocated cell
that introduces two new components, p->v and p->next, to
the reachable graph. Accordingly, CUTE randomly gen-
erates 634 for p->v and non-randomly generates NULL for
p->next, respectively, for the next execution. In the sec-
ond execution, testme takes the then branch of the first
and the second if and the else branch of the third if.
For this execution, CUTE generates the path constraint
(xo > 0,p0 # NULL,2 - 29 + 1 # wo), where po, vo, no,
and zo are the symbolic values of p, p->v, p->next, and
x, respectively. Note that CUTE computes the expression



2-xo + 1 (corresponding to the execution of f) through an
inter-procedural, dynamic tracing of symbolic expressions.
CUTE next solves the path constraint (xo > 0,po #
NULL, 2-20+1 = vo), obtained by negating the last predicate
and generates Input 3 from Figure 1 for the next execution.
Note that the specific value of g has changed, but it remains
in the same equivalence class with respect to the predicate
where it appears, namely 2o > 0. On Input 3, testme takes
the then branch of the first three if statements and the
else branch of the fourth if. CUTE generates the path
constraint (xo > 0,po # NULL,2-x0 + 1 = vo, po # no). This
path constraint includes dynamically obtained constraints
on pointers. CUTE handles constraints on pointers but re-
quires no static alias analysis. To drive the program along
an alternative path in the next execution, CUTE solves the
constraints (zo > 0,po # NULL,2 - xo + 1 = vo,po = no> and
generates Input 4 from Figure 1. On this input, the fourth
execution of testme reveals the error in the code.

3. CUTE

We first define the input logical input map that CUTE
uses to represent inputs. We also introduce program units
of a simple C-like language (cf. [19]). We present how CUTE
instruments programs and performs concolic execution. We
then describe how CUTE solves the constraints after every
execution. We next present how CUTE handles complex
data structures. We finally discuss the approximations that
CUTE uses for pointer constraints.

To explore execution paths, CUTE first instruments the
code under test. CUTE then builds a logical input map Z for
the code under test. Such a logical input map can represent
a memory graph in a symbolic way. CUTE then repeatedly
runs the instrumented code as follows:

1. It uses the logical input map 7 to generate a concrete
input memory graph for the program and two symbolic
states, one for pointer values and another for primitive
values.

2. It runs the code on the concrete input graph, collect-
ing constraints (in terms of the symbolic values in the
symbolic state) that characterize the set of inputs that
would take the same execution path as the current ex-
ecution path.

3. It negates one of the collected constraints and solves
the resulting constraint system to obtain a new logical
input map Z’ that is similar to Z but (likely) leads the
execution through a different path. It then sets 7 = I’
and repeats the process.

Conceptually, CUTE executes the code under test both
concretely and symbolically at the same time. The actual
CUTE implementation first instruments the source code un-
der test, adding functions that perform the symbolic execu-
tion. CUTE then repeatedly executes the instrumented code
only concretely.

3.1 Logical Input Map

CUTE keeps track of input memory graphs as a logical in-
put map Z that maps logical addresses to values that are ei-
ther logical addresses or primitive values. This map symbol-
ically represents the input memory graph at the beginning
of an execution. The reason that CUTE introduces logical
addresses is that actual concrete addresses of dynamically

allocated cells may change in different executions. Also, the
concrete addresses themselves are not necessary to repre-
sent memory graphs; it suffices to know how the cells are
connected. Finally, CUTE attempts to make consecutive
inputs similar, and this can be done with logical addresses.
If CUTE used the actual physical addresses, it would de-
pend on malloc and free (to return the same addresses)
and more importantly, it would need to handle destructive
updates of the input by the code under test: after CUTE
generates one input, the code changes it, and CUTE would
need to know what changed to reconstruct the next input.

Let N be the set of natural numbers and V be the set
of all primitive values. Then, Z: N — N U V. The values
in the domain and the range of Z belonging to the set N
represents the logical addresses. We also assume that each
logical address | € N has a type associated with it. A type
can be T * (a pointer of type T) (where T can be primitive
type or struct type) or Tp (a primitive type). The function
typeOf (1) returns this type. Let the function sizeOf (T) re-
turns the number of memory cells that an object of type T
uses. If typeOf (1) is T * and Z(l) #NULL, then the sequence
Z(v),...,Z(v+n—1) stores the value of the object pointed
by the logical address ! (each element in the sequence repre-
sents the content of each cell of the object in order), where
v = Z(1) and n =sizeOf (T). This representation of a logi-
cal input map essentially gives a simple way to serialize a
memory graph.

We illustrate logical inputs on an example. Recall the ex-
ample Input 3 from Figure 1. CUTE represents this input
with the following logical input: (3,1,3,0), where logical
addresses range from 1 to 4. The first value 3 corresponds
to the value of p: it points to the location with logical ad-
dress 3. The second value 1 corresponds to x. The third
value corresponds to p->v and the fourth to p->next (0 rep-
resents NULL). This logical input encodes a set of concrete
inputs that have the same underlying graph but reside at dif-
ferent concrete addresses. Similarly, the logical input map
for Input 4 from Figure 1 is (3,1, 3, 3).

3.2 Unitsand Program Model

A unit under test can have several functions. CUTE re-
quires the user to select one of them as the entry function
for which CUTE generates inputs. This function in turn can
call other functions in the unit as well as functions that are
not in the unit (e.g., library functions). The entry function
takes as input a memory graph, a set of all memory loca-
tions reachable from the input pointers. We assume that
the unit operates only on this input, i.e., the unit has no
external functions (that would, for example, simulate an in-
teractive input from the user or file reading). However, a
program can allocate additional memory, and the execution
then operates on some locations that were not reachable in
the initial state. Given an entry function, CUTE generates
a main function that first initializes all the arguments of
the function by calling the primitive function input() (de-
scribed next) and then calls the entry function with these
arguments. The unit along with the main function forms a
closed program that CUTE instruments and tests.

We describe how CUTE works for a simple C-like language
shown in Figure 2. START represents the first statement of a
program under test. Each statement has an optional label.
The program can get input using the expression input(). For
simplicity of description, we assume that a program gets all



P = Stmt* Stmt = [I:]S
S = lhs < e|if p goto I’ | START | HALT | ERROR
lhs == | *v
en= v|&v|*v|c|v opv|input()
where op € {+7_7/a*) %7' . '}7
v is a variable, ¢ is a constant
pi= v=v|vF#v|v<v|v<v|v>v|v>w

Figure 2: Syntax of a simple C-like language

the inputs at the beginning of an execution and the number
of inputs is fixed. CUTE uses the CIL framework [19] to
convert more complex statements (with no function calls)
into this simplified form by introducing temporary variables.
For example, CIL converts **v = 3 into tl = *v; *tl =
3 and p[i] = q[j] into t1 = q+j; t2 = p+i; *t2 = *t1.
Details of handling of function calls using a symbolic stack
are discussed in [24].

The C expression &v denotes the address of the variable
v, and *v denotes the value of the address stored in v. In
concrete state, each address stores a value that either is
primitive or represents another memory address (pointer).

3.3 Instrumentation

To test a program P, CUTE tries to explore all execution
paths of P. To explore all paths, CUTE first instruments
the program under test. Then, it repeatedly runs the in-
strumented program P as follows:

// input: P is the instrumented program to test

// depth is the depth of bounded DFS
run_.CUTE(P,depth)
Z =[]; h = (number of arguments in P) + 1;

completed=false; branch_hist=[];
while not completed
execute P

Before starting the execution loop, CUTE initializes the
logical input map Z to an empty map and the variable h rep-
resenting the next available logical address to the number of
arguments to the instrumented program plus one. (CUTE
gives a logical address to each argument at the very begin-
ning.) The integer variable depth specifies the depth in the
bounded DFS described in Section 3.4.

Figure 3 shows the code that CUTE adds during instru-
mentation. The expressions enclosed in double quotes (“e”)
represent syntactic objects. Due to space constraint, we de-
scribe the instrumentation for function calls in [24]. In the
following section, we describe the various global variables
and procedures that CUTE inserts.

3.4 Concolic Execution

Recall that a program instrumented by CUTE runs con-
cretely and at the same time performs symbolic computation
through the instrumented function calls. The symbolic exe-
cution follows the path taken by the concrete execution and
replaces with the concrete value any symbolic expression
that cannot be handled by our constraint solver.

An instrumented program maintains at the runtime two
symbolic states A and P, where A maps memory locations
to symbolic arithmetic expressions, and P maps memory lo-
cations to symbolic pointer expressions. The symbolic arith-
metic expressions in CUTE are linear, i.e. of the form

Before Instrumentation | After Instrumentation
// program start global vars A =P = path.c = M = [];

START global vars i =inputNumber= 0;
START
// inputs inputNumber = inputNumber+1;

initInput(&wv, inputNumber);
inputNumber = inputNumber+1;
initInput (v, input Number);
ezecute_symbolic(&v,“e”);

v «— input();
// inputs

*v — input();
// assignment

v — €; UV <— €

// assignment ezecute_symbolic(v,“e”);
*V — € *V — €

// conditional evaluate_predicate(“p”, p);
if (p) goto I if (p) goto I

// normal termination solve_constraint();
HALT HALT;

// program error print “Found Error”
ERROR ERROR;

Figure 3: Code that CUTE’s instrumentation adds

a1x1+. ..+ anxy+c, where n > 1, each x; is a symbolic vari-
able, each a; is an integer constant, and c is an integer con-
stant. Note that n must be greater than 0. Otherwise, the
expression is a constant, and CUTE does not keep constant
expressions in A, because it keeps A small: if a symbolic
expression is constant, its value can be obtained from the
concrete state. The arithmetic constraints are of the form
a171 + ... + anZn + ¢ < 0, where 1 € {<, >, <, >, =, #}.
The pointer expressions are simpler: each is of the form x,,
where z, is a symbolic variable, or the constant NULL. The
pointer constraints are of the form = 22 y or x = NULL, where
=e{=+#}

Given any map M (e.g., A or P), we use M’ = M[m —
v] to denote the map that is the same as M except that
M'(m) = v. We use M’ = M — m to denote the map that
is the same as M except that M’(m) is undefined. We say
m €domain(M) if M(m) is defined.

Input Initialization using Logical Input Map

Figure 4 shows the procedure initInput(m,l) that uses the
logical input map Z to initialize the memory location m,
to update the symbolic states A and P, and to update the
input map Z with new mappings.

M maps logical addresses to physical addresses of mem-
ory cells already allocated in an execution, and malloc(n)
allocates n fresh cells for an object of size n and returns the
addresses of these cells as a sequence. The global variable h
keeps track of the next unused logical address available for
a newly allocated object.

For a logical address [ passed as an argument to initInput,
Z(1) can be undefined in two cases: (1) in the first execution
when Z is the empty map, and (2) when [ is some logical
address that got allocated in the process of initialization.
If Z(1) is undefined and if typeOf(l) is not a pointer, then
the content of the memory is initialized randomly; other-
wise, if the typeOf(l) is a pointer, then the contents of [
and m are both initialized to NULL. Note that CUTE does
not attempt to generate random pointer graphs but assigns
all new pointers to NULL. If typeOf(Z(l)) is a pointer to T
(i.e.,, T *) and M(!) is defined, then we know that the ob-
ject pointed by the logical address [ is already allocated and
we simply initialize the content of m by M(l). Otherwise,
we allocate sufficient physical memory for the object pointed
by *m using malloc and initialize them recursively. In the



// input: m is the physical address to initialize
[ is the corresponding logical address
// modifies h,Z, A, P
initInput(m,l)
if | ¢ domain(T)
if (typeOf (*m) ==pointer to T) *m =NULL;
else xm =random();
T =7I[l — xm];
else
v =v=1I();
if (typeOf(v) ==pointer to T)
if (v € domain(M))

*m = M (v);

else
n = sizeOf (T);
{m1,...,my} =malloc(n);

if (v ==non-NULL)
v’ =h; h="h+n; // his the next logical address
sm=my; T =ZI[l— v']; M= M[v— mq];
for j=1ton
initInput(m;, v’ +j — 1);
else
xm = v; T =ZI[l — vl;
// z; is a symbolic variable for logical address [
if (typeOf (m) ==pointer to T) P = P[m — x;];
else A = A[m — x;];

Figure 4: Input initialization

process, we also allocate logical addresses by incrementing
h if necessary.

Symbolic Execution

Figure 5 shows the pseudo-code for the symbolic manip-
ulations done by the procedure execute_symbolic which is
inserted by CUTE in the program under test during instru-
mentation. The procedure ezecute_symbolic(m, e) evaluates
the expression e symbolically and maps it to the memory
location m in the appropriate symbolic state.

Recall that CUTE replaces a symbolic expression that the
CUTE’s constraint solver cannot handle with the concrete
value from the execution. Assume, for instance, that the
solver can solve only linear constraints. In particular, when
a symbolic expression becomes non-linear, as in the multi-
plication of two non-constant sub-expressions, CUTE sim-
plifies the symbolic expression by replacing one of the sub-
expressions by its current concrete value (see line L in Fig-
ure. 5). Similarly, if the statement is for instance v/ «— v/v’
(see line D in Figure. 5), and both v and v’ are symbolic,
CUTE removes the memory location &v” from both A and
P to reflect the fact that the symbolic value for v” is unde-
fined.

Figure 6 shows the function evaluate_predicate(p,b) that
symbolically evaluates p and updates path_c. In case of
pointers, CUTE only considers predicates of the form z = y,
r # y, x =NULL, and x #NULL, where = and y are symbolic
pointer variables. We discuss this in Section 3.7. If a sym-
bolic predicate expression is constant, then true or false is
returned.

At the time symbolic evaluation of predicates in the proce-
dure evaluate_predicate, symbolic predicate expressions from
branching points are collected in the array path_c. At the
end of the execution, path_c[0...i — 1], where 7 is the num-
ber of conditional statements of P that CUTE executes,
contains all predicates whose conjunction holds for the exe-
cution path.

Note that in both the procedures execute_symbolic and

// inputs: m is a memory location
e is an expression to evaluate
// modifies A and P by symbolically executing xm « e
execute_symbolic(m, e)
if (i <depth)
match e:
case “vq”:
my = &v;
if (m1 € domain(P))

A=A—-m;P =P[m— P(mi)]; // remove if A contains m
else if (my € domain(A))

A=Am— A(m1);P =P —m;
else P=P—-m; A=A—m;

case “vi £ v2”: // where + € {+, -}
my1 = &'Ul; mo = &'UQ;
if (m1 € domain(A) and my € domain(A))

v = “A(m1) £ A(m2)”; // symbolic addition or subtraction
else if (m; € domain(A))

v = “A(mq) £ v2”; // symbolic addition or subtraction
else if (m2 € domain(A))

v = “v1 £ A(m2)”; // symbolic addition or subtraction
else A = A — m;P =P — m; return;
A=Am—v;P=P—m;

case “vy * v2”:
my = &vy; mo = &vg;
if (m1 € domain(A) and my € domain(A))
L: v = “v1 * A(ma)”; // replace one with concrete value
else if (m; € domain(A))

v = “A(m1) * v2”; // symbolic multiplication
else if (m2 € domain(A))

v = “v1 * A(mg)”; // symbolic multiplication
else A = A — m;P =P — m; return;
A=Am— v);P =P —m;

case “xv1”:
ma = V1;
if (m2 € domain(P)) A=A —m;P = P[m+— P(msa)];
else if (m2 € domain(A)) A= Alm — A(mz)]; P =P —m;
else A=A—m;P =P —m;
default:
D: A=A—m;P =P —m;

Figure 5: Symbolic execution

evaluate_predicate, we skip symbolic execution if the number
of predicates executed so far (recorded in the global variable
1) becomes greater than the parameter depth, which gives
the depth of bounded DFS described next.

Bounded Depth-First Search

To explore paths in the execution tree, CUTE implements
a (bounded) depth-first strategy (bounded DFS). In the
bounded DF'S, each run (except the first) is executed with
the help of a record of the conditional statements (which is
the array branch_hist) executed in the previous run. The
procedure cmp_n_set_branch_hist in figure 7 checks whether
the current execution path matches the one predicted at the
end of the previous execution and represented in the variable
branch_hist. We observed in our experiments that the exe-
cution almost always follows a prediction of the outcome of
a conditional. However, it could happen that a prediction is
not fulfilled because CUTE approximates, when necessary,
symbolic expressions with concrete values (as explained in
Section 3.4), and the constraint solver could then produce
a solution that changes the outcome of some earlier branch.
(Note that even when there is an approximation, the so-
lution does not necessary change the outcome.) If it ever
happens that a prediction is not fulfilled, an exception is
raised to restart run_.CUTE with a fresh random input.
Bounded depth-first search proves useful when the length
of execution paths are infinite or long enough to prevent ex-
haustively search the whole computation tree. Particularly,



// inputs: p is a predicate to evaluate
b is the concrete value of the predicate in S
// modifies path_c, i
evaluate_predicate(p, b)
if (¢ <depth)
match p:
case “vi b vy”: // where < € {<, <, >, >}
my = &vy;me = &vs;
if (m1 € domain(A) and my € domain(A))
c= “A(m1) — A(mz) 1 07;
else if (m; € domain(A))
c= “A(m1) — vz >107;
else if (m2 € domain(A))
c = “vy — A(mz) >x07;
else ¢ = b;
case “vi X vp”: // where & € {=,#}
my = &vy;me = &vs;
if (m1 € domain(P) and ma € domain(P))
c= “P(mq) =2 P(m2)";
else if (m; € domain(P) and vy ==NULL)
c = “P(my) = NULL”;
else if (m2 € domain(P) and v; ==NULL)
c = “P(mz) = NULL”;
else if (m1 € domain(A) and m2 € domain(A))
c=“A(m1) — A(mz) = 07;
else if (m; € domain(A)) ¢ = “A(m1) — vz 207,
else if (m2 € domain(A)) ¢ = “vi — A(mz2) 207,
else ¢ = b;
if (b) path_c[i] = ¢;
else path_c[i] =neg(c);
cmp_n_set_branch_hist(b);
Pi=i4 1

Figure 6: Symbolic evaluation of predicates

// modifies branch_hist
cmp_n_set_branch_hist(branch)
if (i < |branch_hist|)
if (branch_hist[i].branch#branch)
print “Prediction Failed”;
raise an exception; // restart run_.CUTE
else if (i == |branch_hist| — 1)
branch_hist[i].done =true;
else branch_hist[i].branch = branch;
branch_hist[i].done = false;

Figure 7: Prediction checking

it is important for generating finite sized data structures
when using preconditions such as data structure invariants
(see section 3.6. For example, if we use an invariant to
generate sorted binary trees, then a non-bounded depth-
first search would end up generating infinite number of trees
whose every node has at most one left children and no right
children.

3.5 Constraint Solving

We next present how CUTE solves path constraints.
Given a path constraint C=neg_last(path_c[0...j]), CUTE
checks if C is satisfiable, and if so, finds a satisfying solution
AR

We have implemented a constraint solver for CUTE to op-
timize solving of the path constraints that arise in concolic
execution. Our solver is built on top of 1p_solve [17], a con-
straint solver for linear arithmetic constraints. Our solver
provides three important optimizations for path constraints:
(OPT 1) Fast unsatisfiability check: The solver checks
if the last constraint is syntactically the negation of any
preceding constraint; if it is, the solver does not need to
invoke the expensive semantic check. (Experimental results
show that this optimization reduces the number of semantic
checks by 60-95%.)

// modifies branch_hist, I, completed
solve_constraint() =

Jj=1i—1
while (j > 0)
if (branch_hist[j].done == false)

branch_hist[j].branch= —branch_hist[j].branch;

if (37’ that satisfies neg_last(path-c[0. .. j]))
branch_hist=branch_hist[0 . . . j];
=1
return;

else j =7 —1;

else j =7 —1;
if (j < 0) completed=true;

Figure 8: Constraint solving

(OPT 2) Common sub-constraints elimination: The
solver identifies and eliminates common arithmetic sub-
constraints before passing them to the 1p_solve. (This sim-
ple optimization, along with the next one, is significant in
practice as it can reduce the number of sub-constraints by
64% to 90%.)

(OPT 3) Incremental solving: The solver identifies de-
pendency between sub-constraints and exploits it to solve
the constraints faster and keep the solutions similar. We
explain this optimization in detail.

Given a predicate p in C, we define vars(p) to be the set of
all symbolic variables that appear in p. Given two predicates
p and p’ in C, we say that p and p’ are dependent if one of
the following conditions holds:

1. wars(p)N vars(p') # 0, or
2. there exists a predicate p” in C such that p and p” are
dependent and p’ and p” are dependent.

Two predicates are independent if they are not dependent.

The following is an important observation about the path
constraints C' and C’ from two consecutive concolic execu-
tions: C and C’ differ in the small number of predicates
(more precisely, only in the last predicate when there is no
backtracking), and thus their respective solutions Z and Z’
must agree on many mappings. Our solver exploits this ob-
servation to provide more efficient, incremental constraint
solving. The solver collects all the predicates in C that
are dependent on —path_c[j]. Let this set of predicates be
D. Note that all predicates in D are either linear arith-
metic predicates or pointer predicates, because no predicate
in C contains both arithmetic symbolic variables and pointer
symbolic variables. The solver then finds a solution Z” for
the conjunction of all predicates from D. The input for the
next run is then Z' = Z[Z"”] which is the same as 7 except
that for every [ for which Z"” (1) is defined, Z'(1) = Z"(l). In
practice, we have found that the size of D is almost one-
eighth the size of C' on average.

If all predicates in D are linear arithmetic predicates, then
CUTE uses integer linear programming to compute Z". If
all predicates in D are pointer predicates, then CUTE uses
the following procedure to compute Z".

Let us consider only pointer constraints, which are either
equalities or disequalities. The solver first builds an equiv-
alence graph based on (dis)equalities (similar to checking
satisfiability in theory of equality [2]) and then based on
this graph, assigns values to pointers. The values assigned
to the pointers can be a logical address in the domain of
Z, the constant non-NULL (a special constant), or the con-
stant NULL (represented by 0). The solver views NULL as a



// inputs: p is a symbolic pointer predicate
// 7 is the previous solution
// returns: a new solution Z”’
solve_pointer(p, T)
match p:
case “x #NULL”: Z" = {y +snon-NULL| y € [z]=};
case “z =NULL": Z" = {y —NULL| y € [z]=};
case ‘e =y": I" = {z— v | 2z € [y]= and Z(z) = v};
case “cz # y”: I" = {z — non-NULL| z € [y]=};
return Z'’;

Figure 9: Assigning values to pointers

symbolic variable. Thus, all predicates in D are of the form
xr =y or x # y, where z and y are symbolic variables. Let
D’ be the subset of D that does not contain the predicate
—path_c[j]. The solver first checks if —path_c[j] is consistent
with the predicates in D. For this, the solver constructs an
undirected graph whose nodes are the equivalence classes
(with respect to the relation =) of all symbolic variables
that appear in D’. We use [z]= to denote the equivalence
class of the symbolic variable z. Given two nodes denoted
by the equivalence classes [z]= and [y]=, the solver adds an
edge between [z]= and [y]= iff there exists symbolic vari-
ables u and v such that u # v exists in D’ and u € [z]= and
v € [y]=. Given the graph, the solver finds that —path_c[j]
is satisfiable if —path_c[j] is of the form x = y and there is
no edge between [z]= and [y]= in the graph; otherwise, if
—path_c[j] is of the form x # y, then —path_c[j] is satisfi-
able if [z]= and [y]= are not the same equivalence class. If
—path_c[j] is satisfiable, the solver computes Z” using the
procedure solve_pointer(—path_c[j],Z) shown in Figure 9.

Note that after solving the pointer constraints, we either
add (by assigning a pointer to non-NULL) or remove a node
(by assigning a pointer NULL) from the current input graph,
or alias or non-alias two existing pointers. This keeps the
consecutive solutions similar. Keeping consecutive solutions
for pointers similar is important because of the logical input
map: if inputs were very different, CUTE would need to
rebuild parts of the logical input map.

3.6 Data Structure Testing

We next consider testing of functions that take data struc-
tures as inputs. More precisely, a function has some pointer
arguments, and the memory graph reachable from the point-
ers forms a data structure. For instance, consider testing of
a function that takes a list and removes an element from it.
We cannot simply test such function in isolation [5,27,30]—
say generating random memory graphs as inputs—because
the function requires the input memory graph to satisfy the
data structure invariant.' If an input is invalid (i.e., vi-
olates the invariant), the function provides no guarantees
and may even result in an error. For instance, a function
that expects an acyclic list may loop infinitely given a cyclic
list, whereas a function that expects a cyclic list may deref-
erence NULL given an acyclic list. We want to test such
functions with valid inputs only. There are two main ap-
proaches to obtaining valid inputs: (1) generating inputs
with call sequences [27,30] and (2) solving data structure
invariants [5,27]. CUTE supports both approaches.

The functions may have additional preconditions, but we
omit them for brevity of discussion; for more details, see [5].

Generating Inputs with Call Sequences:

One approach to generating data structures is to use se-
quences of function calls. Each data structure implements
functions for several basic operations such as creating an
empty structure, adding an element to the structure, re-
moving an element from the structure, and checking if an
element is in the structure. A sequence of these operations
can be used to generate an instance of data structure, e.g.,
we can create an empty list and add several elements to it.
This approach has two requirements [27]: (1) all functions
must be available (and thus we cannot test each function in
isolation), and (2) all functions must be used in generation:
for complex data structures, e.g., red-black trees, there are
memory graphs that cannot be constructed through addi-
tions only but require removals [27,30].

Solving Data Structure Invariants:

Another approach to generating data structures is to use the
functions that check invariants. Good programming prac-
tice suggests that data structures provide such functions.
For example, SGLIB [25] (see Section 4.2) is a popular C
library for generic data structures that provides such func-
tions. We call these functions repOk [5]. (SGLIB calls them
check_consistency.) As an illustration, SGLIB implements
operations on doubly linked lists and provides a repOk func-
tion that checks if a memory graph is a valid doubly linked
list; each repOk function returns true or false to indicate
the validity of the input graph.

The main idea of using repOk functions for testing is to
solve repOk functions, i.e., generate only the input mem-
ory graphs for which repOk returns true [5,27]. This ap-
proach allows modular testing of functions that implement
data structure operations (i.e., does not require that all op-
erations be available): all we need for a function under test
is a corresponding repOk function. Previous techniques for
solving repOk functions include a search that uses purely
concrete execution [5] and a search that uses symbolic execu-
tion for primitive data but concrete values for pointers [27].
CUTE, in contrast, uses symbolic execution for both prim-
itive data and pointers.

The constraints that CUTE builds and solves for pointers
allow it to solve repOk functions asymptotically faster than
the fastest previous techniques [5,27]. Consider, for exam-
ple, the following check from the invariant for doubly linked
list: for each node n, n.next.prev == n. Assume that the
solver is building a doubly linked list with N nodes reachable
along the next pointers. Assume also that the solver needs
to set the values for the prev pointers. Executing the check
once, CUTE finds the exact value for each prev pointer and
thus takes O(N) steps to find the values for all N prev point-
ers. In contrast, the previous techniques [5,27] take O(N?)
steps as they search for the value for each pointer, trying
first the value NULL, then a pointer to the head of the list,
then a pointer to the second element and so on.

3.7 Approximationsfor Scalable
Symbolic Execution

CUTE uses simple symbolic expressions for pointers and
builds only (dis)equality constraints for pointers. We be-
lieve that these constraints, which approximate the exact
path condition, are a good trade-off. To exactly track the
pointer constraints, it would be necessary to use the theory
of arrays/memory with updates and selections [18]. How-



ever, it would make the symbolic execution more expensive
and could result in constraints whose solution is intractable.
Therefore, CUTE does not use the theory of arrays but
handles arrays by concretely instantiating them and mak-
ing each element of the array a scalar symbolic variable.

It is important to note that, although CUTE uses sim-
ple pointer constraints, it still keeps a precise relationship
between pointers: the logical input map (through types),
maintains a relationship between pointers to structs and
their fields and between pointers to arrays and their ele-
ments. For example, from the logical input map (3,1, 3,0)
for Input 3 from Figure 1, CUTE knows that p->next is
at the (logical) address 4 because p has value 3, and the
field next is at the offset 1 in the struct cell. Indeed, the
logical input map allows CUTE to use only simple scalar
symbolic variables to represent the memory and still obtain
fairly precise constraints.

Finally, we show that CUTE does not keep the exact
pointer constraints. Consider for example the code snippet
*p=0; *q=1; if (*p == 1) ERROR (and assume that p and
q are not NULL). CUTE cannot generate the constraint p==q
that would enable the program to take the “then” branch.
This is because the program contains no conditional that
can generate the constraint. Analogously, for the code snip-
pet a[i]=0; al[jl=1; if (al[i]l==0) ERROR, CUTE cannot
generate i==j.

4. IMPLEMENTATION AND
EXPERIMENTAL EVALUATION

We have implemented the main parts of CUTE in C.
To instrument code under test, we use CIL [19], a frame-
work for parsing and transforming C programs. To solve
arithmetic inequalities, the constraint solver of CUTE uses
1p_solve [17], a library for integer linear programming. Fur-
ther details about the implementation can be found in [24].

We illustrate two case studies that show how CUTE can
detect errors. In the second case study, we also present
results that show how CUTE achieves branch coverage of
the code under test. We performed all experiments on a
Linux machine with a dual 1.7 GHz Intel Xeon processor.

4.1 Data Structuresof CUTE

We applied CUTE to test its own data structures. CUTE
uses a number of non-standard data structures at run-
time, such as cu_linear to represent linear expressions,
cu_pointer to represent pointer expressions, cu_depend to
represent dependency graphs for path constraints etc. Our
goal in this case study was to detect memory leaks in addi-
tion to standard errors such as segmentation faults, assertion
violation etc. To that end, we used CUTE in conjunction
with valgrind [26]. We discovered a few memory leaks and
a couple of segmentation faults that did not show up in
other uses of CUTE. This case study is interesting in that
we applied CUTE to partly unit test itself and discovered
bugs. We briefly describe our experience with testing the
cu_linear data structure.

We tested the cu_linear module of CUTE in the depth-
first search mode of CUTE along with valgrind. In 537 it-
erations, CUTE found a memory leak. The following is a
snippet of the function cu_linear_add relevant for the mem-
ory leak:

cu_linear *

cu_linear_add(cu_linear *cl, cu_linear *c2, int add) {
int i, j, k, flag;
cu_linear* ret=(cu_linear*)malloc(sizeof(cu_linear));
... // skipped 18 lines of code
if (ret->count==0) return NULL;

If the sum of the two linear expressions passed as arguments
becomes constant, the function returns NULL without freeing
the memory allocated for the local variable ret. CUTE con-
structed this scenario automatically at the time of testing.
Specifically, CUTE constructed the sequence of function
calls 11=cu_linear_create(0); lil=cu_linear_create(0);
li=cu_linear negate(11); li=cu_linear_add(11,12,1);
that exposes the memory leak that valgrind detects.

42 SGLIBLibrary

We also applied CUTE to unit test SGLIB [25] version
1.0.1, a popular, open-source C library for generic data
structures. The library has been extensively used to im-
plement the commercial tool Xrefactory. SGLIB consists of
a single C header file, sglib.h, with about 2000 lines of code
consisting only of C macros. This file provides generic im-
plementation of most common algorithms for arrays, lists,
sorted lists, doubly linked lists, hash tables, and red-black
trees. Using the SGLIB macros, a user can declare and
define various operations on data structures of parametric
types.

The library and its sample examples provide verifier func-
tions (can be used as repOk) for each data structure ex-
cept for hash tables. We used these verifier functions to
test the library using the technique of repOk mentioned in
Section 3.6. For hash tables, we invoked a sequence of its
function. We used CUTE with bounded depth-first search
strategy with bound 50. Figure 10 shows the results of our
experiments.

We chose SGLIB as a case study primarily to measure the
efficiency of CUTE. As SGLIB is widely used, we did not
expect to find bugs. Much to our surprise, we found two
bugs in SGLIB using CUTE.

The first bug is a segmentation fault that occurs in the
doubly-linked-list library when a non-zero length list is con-
catenated with another zero-length list. CUTE discovered
the bug in 140 iterations (about 1 seconds) in the bounded
depth-first search mode. This bug is easy to fix by putting
a check on the length of the second list in the concatenation
function.

The second bug, which is a more serious one, was found
by CUTE in the hash table library in 193 iterations (in 1
second). Specifically, CUTE constructed the following valid
sequence of function calls which gets the library into an in-
finite loop:

typedef struct ilist { int i; struct ilist *next; } ilist;
ilist *htab[10];
main() {
struct ilist *e,*el,*e2,*m;
sglib_hashed_ilist_init(htab);
e=(ilist *)malloc(sizeof(ilist)); e->next = 0; e->i=0;
sglib_hashed_ilist_add_if_not_member (htab,e,&m);
sglib_hashed_ilist_add(htab,e);
e2=(ilist *)malloc(sizeof(ilist)); e2->next = 0; e2->i=0;
sglib_hashed_ilist_is_member (htab,e2); }

where ilist is a struct representing an element of the hash
table. We reported these bugs to the SGLIB developers, who
confirmed that these are indeed bugs.



Name Run time # of # of Branches | % Branch | # of Functions | OPT 1 OPT 2 # of Bugs
in seconds | Iterations Explored Coverage Tested in % & 3in % Found
Array Quick Sort 2 732 43 97.73 2 67.80 49.13 0
Array Heap Sort 4 1764 36 100.00 2 71.10 46.38 0
Linked List 2 570 100 96.15 12 86.93 88.09 0
Sorted List 2 1020 110 96.49 11 88.86 80.85 0
Doubly Linked List 3 1317 224 99.12 17 86.95 79.38 1
Hash Table 1 193 46 85.19 8 97.01 52.94 1
Red Black Tree 2629 | 1,000,000 242 71.18 17 89.65 64.93 0

Figure 10: Results for testing SGLIB 1.0.1 with

Figure 10 shows the results for testing SGLIB 1.0.1 with
the bounded depth-first strategy. For each data structure
and array sorting algorithm that SGLIB implements, we
tabulate the time that CUTE took to test the data struc-
ture, the number of runs that CUTE made, the number of
branches it executed, branch coverage obtained, the number
of functions executed, the benefit of optimizations, and the
number of bugs found.

The branch coverage in most cases is less than 100%. Af-
ter investigating the reason for this, we found that the code
contains a number of assert statements that were never vi-
olated and a number of predicates that are redundant and
can be removed from the conditionals.

The last two columns in Figure 10 show the benefit of the
three optimizations from Section 3.5. The column OPT 1
gives the average percentage of executions in which the fast
unsatisfiability check was successful. It is important to note
that the saving in the number of satisfiability checks trans-
lates into an even higher relative saving in the satisfiability-
checking time because 1p_solve takes much more time (ex-
ponential in number of constraints) to determine that a set
of constraints is unsatisfiable than to generate a solution
when one exists. For example, for red-black trees and depth-
first search, OPT 1 was successful in almost 90% of execu-
tions, which means that OPT 1 reduces the number of calls
to 1lp_solve an order of magnitude. However, OPT 1 re-
duces the solving time of 1p_solve more than two orders of
magnitude in this case; in other words, it would be infeasible
to run CUTE without OPT 1. The column OPT 2 & 3 gives
the average percentage of constraints that CUTE eliminated
in each execution due to common sub-expression elimination
and incremental solving optimizations. Yet again, this re-
duction in the size of constraint set translates into a much
higher relative reduction in the solving time.

5. RELATED WORK

Automating unit testing is an active area of research. In
the last five years, over a dozen of techniques and tools have
been proposed that automatically increase test coverage or
generate test inputs.

The simplest, and yet often very effective, techniques use
random generation of (concrete) test inputs [4,8,10,20,21].
Some recent tools use bounded-exhaustive concrete execu-
tion [5,12,29] that tries all values from user-provided do-
mains. These tools can achieve high code coverage, espe-
cially for testing data structure implementation. However,
they require the user to carefully choose the values in the
domains to ensure high coverage.

Tools based on symbolic execution use a variety of ap-
proaches—including abstraction-based model checking [1,3],
explicit-state model checking [27], symbolic-sequence explo-
ration [22,30], and static analysis [9]—to detect (potential)

bounded depth-first strategy with depth 50

bugs or generate test inputs. These tools inherit the incom-
pleteness of their underlying reasoning engines such as theo-
rem provers and constraint solvers. For example, tools using
precise symbolic execution [27,30] cannot analyze any code
that would build constraints out of pre-specified theories,
e.g., any code with non-linear arithmetic or array indexing
with non-constant expressions. As another example, tools
based on predicate abstraction [1,3] do not handle code that
depends on complex data structures. In these tools, the
symbolic execution proceeds separately from the concrete
execution (or constraint solving).

The closest work to ours is that of Godefroid et al.’s di-
rected automated random testing (DART) [11]. DART con-
sists of three parts: (1) directed generation of test inputs,
(2) automated extraction of unit interfaces from source code,
and (3) random generation of test inputs. CUTE does not
provide automated extraction of interfaces but leaves it up
to the user to specify which functions are related and what
their preconditions are. Unlike DART that was applied
to testing each function in isolation and without precon-
ditions, CUTE targets related functions with preconditions
such as data structure implementations. DART handles con-
straints only on integer types and cannot handle programs
with pointers and data structures; in such situations, DART
tool’s testing reduces to simple and ineffective random test-
ing. DART proposed a simple strategy to generate random
memory graphs: each pointer is either NULL or points to
a new memory cell whose nodes are recursively initialized.
This strategy suffers from several deficiencies:

1. The random generation itself may not terminate [7].

2. The random generation produces only trees; there is no
sharing and aliasing, so there are no DAGs or cycles.

3. The directed generation does not keep track of any
constraints on pointers.

4. The directed generation never changes the underlying
memory graph; it can only change the (primitive, in-
teger) values in the nodes in the graph.

DART also does not consider any preconditions for the code
under test. For example, in the oSIP case study [11], it is
unclear whether some NULL values are actual bugs or false
alarms due to violated preconditions. Moreover, CUTE im-
plements a novel constraint solver that significantly speeds
up the analysis.

Cadar and Engler proposed Execution Generated Test-
ing (EGT) [6] that takes a similar approach to testing as
CUTE: it explores different execution paths using a com-
bined symbolic and concrete execution. However, EGT did
not consider inputs that are memory graphs or code that has
preconditions. Also, EGT and CUTE differ in how they ap-
proximate symbolic expressions with concrete values. EGT
follows a more traditional approach to symbolic execution



and proposes an interesting method that lazily solves the
path constraints: EGT starts with only symbolic inputs and
tries to execute the code fully symbolically, but if it cannot,
EGT solves the current constraints to generate a (partial)
concrete input with which the execution proceeds.

CUTE is also related to the prior work that uses back-
tracking to generate a test input that executes one given
path (that may be known to contain a bug) [13,15]. In con-
trast, CUTE attempts to cover all feasible paths, in a style
similar to systematic testing. Moreover, this initial work did
not address inputs that are memory graphs. Visvanathan
and Gupta [28] recently proposed a technique that gener-
ates memory graphs. They also use a specialized symbolic
execution (not the exact execution with symbolic arrays)
and develop a solver for their constraints. However, they
consider one given path, do not consider unknown code seg-
ments (e.g., library functions), and do not use a combined
concrete execution to generate new test inputs.

6. DISCUSSION

Our work shows that approximate symbolic execution for
testing code with dynamic data structures is feasible and
scalable. Moreover, we have shown how to efficiently gen-
erate dynamic data structures by incrementally adding and
removing a node, or by aliasing two pointers. While we de-
scribed an implementation for C, we have also developed
an implementation for the sequential subset of Java. We
are currently investigating how to test programs with con-
currency using a similar method. We are also investigating
the application of the technique to find algebraic security
attacks in cryptographic protocols, and security breaches in
unsafe languages.
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