
1

FastKLEE: Faster Symbolic Execution via
Reducing Redundant Bound Checking of Type-Safe Pointers

ESEC/FSE 2022 Tool Demonstration

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

Background

2

Background

2

Background

• Q: How to improve the quality of software?

2

Background

• Q: How to improve the quality of software?
• A: Software testing

2

Background

• Q: How to improve the quality of software?
• A: Software testing

(Symbolic Execution)

2

Background

• Q: How to improve the quality of software?
• A: Software testing

• General workflow of traditional symbolic execution engine (e.g., KLEE)

(Symbolic Execution)

Symbolic
Execution

Engine

SMT solver

Path
constraints

Satisfying
Assignments

Test cases

Symbolic
valuesSource

code
Intermediate

Representation(IR)
1 2

3

2

Background

• Q: How to improve the quality of software?
• A: Software testing

• General workflow of traditional symbolic execution engine (e.g., KLEE)

(Symbolic Execution)

Interpretation

Symbolic
Execution

Engine

SMT solver

Path
constraints

Satisfying
Assignments

Test cases

Symbolic
valuesSource

code
Intermediate

Representation(IR)
1 2

3

2

Motivation

3

Motivation

3

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

Motivation

3

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

Interpretation

Motivation

3

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

Interpretation

Motivation

3

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of

an interpreted instruction
– All instructions are equal

Interpretation
...…

Motivation

3

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of

an interpreted instruction
– All instructions are equal

Interpretation

Can we reduce the overheads of interpreted instructions
for faster symbolic execution?

...…

Solution – FastKLEE (1/2)

4

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution – FastKLEE (1/2)

4

• Key insight

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution – FastKLEE (1/2)

4

• Key insight
– Only a small portion of memory-related

instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution – FastKLEE (1/2)

4

• Key insight
– Only a small portion of memory-related

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution – FastKLEE (1/2)

4

• Key insight
– Only a small portion of memory-related

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

– Inspired by Type Inference system [1]

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution – FastKLEE (1/2)

4

• Key insight
– Only a small portion of memory-related

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

Solution – FastKLEE (1/2)

4

• Key insight
– Only a small portion of memory-related

instructions need bound checking
– Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

– Inspired by Type Inference system [1]

SAFE/SEQ

WILD

• Advantage: overheads in FastKLEE
– Interpretation overheads for some instructions

are reduced

Reduced overheads

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

5

Solution – FastKLEE (2/2)

5

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

Solution – FastKLEE (2/2)

5

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

Phase I Phase II

Solution – FastKLEE (2/2)

5

• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4

Type Inference
System

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

4
Phase I Phase II

A CheckList

Solution – FastKLEE (2/2)

• Phase II: Conduct Customized Memory Operation in Fast symbolic execution
– Only perform checking for Unsafe memory instructions during interpretation

5

• Phase I: Introduce a Type Inference System to classify memory-related instruction types
– Unsafe memory instructions will be stored in CheckList

4

5

Type Inference
System

Traditional
Symbolic Execution

Source code Intermediate
Representation(IR)

1 2 3

Fast
Symbolic Execution

54
Phase I Phase II

A CheckList

Solution – FastKLEE (2/2)

Tool demonstration

6

Full video demo: https://youtu.be/fjV_a3kt-mo

Type Inference
System

Fast
Symbolic Execution

54
Phase I Phase II

Source code Intermediate
Representation1 2

Installation of FastKLEE

• Impementation
– KLEE [1] and Ccured [2]

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209–224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

https://youtu.be/fjV_a3kt-mo

Tool demonstration

6

Full video demo: https://youtu.be/fjV_a3kt-mo

Type Inference
System

Fast
Symbolic Execution

54
Phase I Phase II

Source code Intermediate
Representation1 2

Installation of FastKLEE

cat.c

• Impementation
– KLEE [1] and Ccured [2]

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209–224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

https://youtu.be/fjV_a3kt-mo

Tool demonstration

6

Full video demo: https://youtu.be/fjV_a3kt-mo

Type Inference
System

Fast
Symbolic Execution

54
Phase I Phase II

Source code Intermediate
Representation1 2

Installation of FastKLEE

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

cat.c

• Impementation
– KLEE [1] and Ccured [2]

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209–224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

https://youtu.be/fjV_a3kt-mo

Tool demonstration

6

Full video demo: https://youtu.be/fjV_a3kt-mo

Type Inference
System

Fast
Symbolic Execution

54
Phase I Phase II

Source code Intermediate
Representation1 2

Installation of FastKLEE

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

2. Instrument IR for type inference
$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc

cat.c

• Impementation
– KLEE [1] and Ccured [2]

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209–224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

https://youtu.be/fjV_a3kt-mo

Tool demonstration

6

Full video demo: https://youtu.be/fjV_a3kt-mo

Type Inference
System

Fast
Symbolic Execution

54
Phase I Phase II

Source code
Intermediate

Representation1 2

Installation of FastKLEE

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc

3. Type inference and produce CheckList
$ opt -load libccured.so -nescheck -stats
-time-passes < cat-linked.bc >& /dev/null

cat.c

• Impementation
– KLEE [1] and Ccured [2]

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209–224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

https://youtu.be/fjV_a3kt-mo

Tool demonstration

6

Full video demo: https://youtu.be/fjV_a3kt-mo

Type Inference
System

Fast
Symbolic Execution

54
Phase I Phase II

Source code
Intermediate

Representation1 2

Installation of FastKLEE

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc

3. Type inference and produce CheckList
$ opt -load libccured.so -nescheck -stats
-time-passes < cat-linked.bc >& /dev/null

cat.c

4. Conduct faster symbolic execution
$ fastklee [options] ./cat.bc --sym-args 0 1
10 --sym-args 0 2 2 --sym-files 1 8

• Impementation
– KLEE [1] and Ccured [2]

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209–224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.

https://youtu.be/fjV_a3kt-mo

Preliminary Evaluation

7

Preliminary Evaluation

7

• Benchmark
– GNU Coreutils
– ~ 1-5k SLOC for each test program

Preliminary Evaluation

7

• Benchmark
– GNU Coreutils
– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• !"#$%&'(% : existing approach
• !)*+ : our approach

Preliminary Evaluation

7

• Results• Benchmark
– GNU Coreutils
– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• !"#$%&'(% : existing approach
• !)*+ : our approach

Preliminary Evaluation

7

• Results• Benchmark
– GNU Coreutils

– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• !"#$%&'(% : existing approach
• !)*+ : our approach – FastKLEE can reduce by up to 9.1% time as the state-of-the-art

approach (i.e., KLEE)

Conclusion

8

• Contribution
– We present FastKLEE, which reduces the interpretation overheads for faster symbolic execution

• Future work
– Use FastKLEE to explore more valuable execution paths in software systems

• valuable: vulnerable and exploitable

Code: https://github.com/haoxintu/FastKLEE

Video demo: https://youtu.be/fjV_a3kt-mo

Email: haoxintu.2020@phdcs.smu.edu.sg

(Please feel free to pull requests or raise any questions if you have!)

https://github.com/haoxintu/FastKLEE
https://youtu.be/fjV_a3kt-mo
mailto:haoxintu.2020@phdcs.smu.edu.sg

