NNNNNNNNNNNNNNNNNNN

FastKLEE: Faster Symbolic Execution via
Reducing Redundant Bound Checking of Type-Safe Pointers

ESEC/FSE 2022 Tool Demonstration

Haoxin Tu, Lingxiao Jiang, Xuhua Ding (Singapore Management University)
He Jiang (Dalian University of Technology)

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

D AGH2L 5Z

5> Dalian University Of Technology

Background

uuuu

B k ‘f SMU Inforrhation Systems
ackground e
UUUUUUU TY

Examples of System & Application Software

T YCE]

System Software

@6 2

Application Software

B k ‘Xk SMU Information Systems
ackground e
UUUUUUU TY

Examples of System & Application Software

C 3 j * Q: How to improve the quality of software?

System Software

806 &

Application Software

B k ‘XA SMU Information Systems
ackground e
UUUUUUU TY

Examples of System & Application Software

-- ¢ | * Q: How to improve the quality of software?
Ul &F° « A: Software testing

System Software

806 2

Application Software

Background

]XI SMU Information Systems

NNNNNNNNNNNNNNNNNNN

Examples of System & Application Software

- WYC

System Software

0 ¢

Application Software

<

* Q: How to improve the quality of software?
* A: Software testing

l

(Symbolic Execution)

B k ‘Xk SMU Information Systems
ackground e
UUUUUUU TY

Examples of System & Application Software

C 3 j * Q: How to improve the quality of software?
i &7 " A: Software testing

System Software l

a ° G & (Symbolic Execution)

Application Software

SMT solver

Path
constraints

Satisfying
Assignments

Symbolic

Source values Intermediate -

* General workflow of traditional symbolic execution engine (e.g., KLEE)

Background

]XI SMU Information Systems

NNNNNNNNNNNNNNNNN

Examples of System & Application Software

System Software

TIYCE

Application Software

SH > I RPN

G Interpretation %‘

Symbolic

Intermediate

Representation(IR)

s°urce values
code -

_ —9

* Q: How to improve the quality of software?
* A: Software testing

l

(Symbolic Execution)

SMT solver

Path
constraints

Satisfying
Assignments

Symbolic

Execution Ee 2

Engine

* General workflow of traditional symbolic execution engine (e.g., KLEE)

K P 1 l ' School of
Motivq ti o n S [e
SINGAPORE MANAGEMENT
UNIVERSITY

Mot I ¢ SMU
A~
o I V a I o n SINGAPORE MANAGEMENT
UNIVERSITY

Intermediate Traditional
—— . —
Source code Representation(IR) Symbolic Execution

° [} -
‘X‘ SMU Information Systems
o qu I o n SINGAPORE MANAGEMENT
UNIVERSITY

Intermediate . Traditional
—— .
Source code Representation(IR) Symbolic Execution

Interpretation

Motivation

Source code —

Intermediate
Representation(IR)

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Traditional
Symbolic Execution

(1) Observation

— The number of interpreted instructions tends to
be huge (several billion only in one hour run)

Elapsed:
KLEE:
KLEE:
KLEE:
KLEE:
KLEE:
KLEE:

01: 00: 04
done:
done:
done:
done:
done:
done:

explored paths = 125017

avg. constructs per query = 74
total queries = 8859

valid queries = 6226

invalid queries = 2633

query cex = 8859

KLEE:

done:

total instructions =

605113213|

KLEE:
KLEE:

done:
done:

completed paths = 125017
generated tests = 65

Interpretation

Motivation ¢ SMU_

Intermediate Traditional
—— . —
Source code Representation(IR) Symbolic Execution

(1) Observation (2) Overheads in current symbolic execution
— The number of interpreted instructions tends to — The color depth represents the overheads of
be huge (several billion only in one hour run) an interpreted instruction

— All instructions are equal

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 ——

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths = 125017
KLEE: done: generated tests = 65

Interpretation

Source code —

Intermediate
Representation(IR)

.

—
' SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

Traditional
Symbolic Execution

(1) Observation

Elapsed: UT: UL U4

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths = 125017

KLEE: done: generated tests = 65

Interpretation

(2) Overheads in current symbolic execution

Can we reduce the overheads of interpreted instructions
for faster symbolic execution?

Solution - FastKLEE (1/2) B e

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2) o SMU | o e

* Key insight

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2) FSMU_

* Key insight
— Only a small portion of memory-related
instructions need bound checking

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2) MU
* Key insight

— Only a small portion of memory-related
instructions need bound checking
— Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

L SMU
~
SINGAPORE MANAGEMENT

* Key insight
— Only a small portion of memory-related
instructions need bound checking
— Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

— Inspired by Type Inference system [1]

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution - FastKLEE (1/2)

* Key insight

— Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted ones (i.e.,

load/store instruction)

— Inspired by Type Inference system [1]

Inference algorithm

% Pointer kinds

|

C

c+

SAFE
SEQ
WILD

G

Type checker

0101001010101
WILD |1e10000101110

Run-time checks | 1010100100101
/ 0110101010110
1000101010101

0101101111001
0010101110101

x SAFE/SEQ Memory-safe

SINGAPORE MANAGEMENT

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

—
' SMU
~
SINGAPORE MANAGEMENT
UNIVERSITY

* Key insight
— Only a small portion of memory-related
instructions need bound checking
— Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

— Inspired by Type Inference system [1]

- Advantage: overheads in FastKLEE

— Interpretation overheads for some instructions
are reduced

\\\
~
~

"~ Reduced overheads
Inference algorithm //
/
SAFE ‘
Pointer kinds c + SEQ
WILD

0101001010101

WILD |1e10000101110

. Run-time checks | 1610160160101

— (0110101010110

C 1000101010101
0101101111001

0010101110101

Type checker x SAFE/SEQ Memory-safe

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

Solution — FastKLEE (2/2)

uuuu

Solution - FastKLEE (2/2)

NNNNNNNNNNNNNNNNN

Intermediate

— .
Source code Representation(IR)

—

Traditional
Symbolic Execution

Solution - FastKLEE (2/2) ESMU i

Representation(IR) Symbolic Execution

Intermediate iti
Source code | ——————p — Traditional L

Phase | Phase I

L SMU
~
SINGAPORE MANAGEMENT

Representation(IR) Symbolic Execution

Intermediate iti
Source code | ——————p — Traditional L

Type Inference | * Checktist

System 0
Phase | Phase Il

L

O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList

Intermediate

— .
Source code Representation(IR)

—

Type Inference
System

A CheckList

—
L SMU
~

SINGAPORE MANAGEMENT

Traditional
Symbolic Execution

Phase |

. Fast
Symbolic Execution

Phase Il

O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList

© - Phase Il: Conduct Customized Memory Operation in Fast symbolic execution
— Only perform checking for Unsafe memory instructions during interpretation

Tool demonsiration ¢ SMU_

Intermediate T Inference Fast
Source code —— . —_— ype In —
Representation System Symbolic Execution
Phase | Phase Il

- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE

|)

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

https://youtu.be/fjV_a3kt-mo

Tool demonsiration ¢ SMU_

Intermediate T Inference Fast
Source code —— . —_— ype In —
Representation System Symbolic Execution
cat.c Phase | Phase Il

- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE

|)

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

https://youtu.be/fjV_a3kt-mo

Tool demonstration v M

Intermediate T Inference Fast
Source code . —_— ype In —
L/& Representation System Symbolic Execution
cat.c Phase | Phase Il

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE

|)

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

https://youtu.be/fjV_a3kt-mo

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Intermediate T Inference Fast
Source code . —_— ype In —_—
L/_& Representation System Symbolic Execution

cat.c Phase | Phase Il

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

v

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc
- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE

|)

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

https://youtu.be/fjV_a3kt-mo

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Source code Intermediate —— | Typelinference | ___| Fast
Representation System Symbolic Execution

cat.c Phase | Phase Il

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

v

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc
- Impementation !

— KLEE [1] and Ccured [2] 3. Type inference and produce CheckList

$ opt -load libccured.so -nescheck -stats

Installation of FastKLEE -time-passes < cat-linked.bc >& /dev/null

|)

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.

https://youtu.be/fjV_a3kt-mo

£ SMU

SINGAPORE MANAGEMENT
UNIVERSITY

Source code Intermediate —— | Typelinference | ___| Fast
Representation System Symbolic Execution e

cat.c Phase | Phase Il

1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

v

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc

- Impementation !
— KLEE [1] and Ccured [2] 3. Type inference and produce CheckList
$ opt -load libccured.so -nescheck -stats

Installation of FastKLEE

-time-passes < cat-linked.bc >& /dev/null v

4. Conduct faster symbolic execution

$ fastklee [options] ./cat.bc --sym-args 0 1
10 --sym-args 0 2 2 --sym-files 1 8

|)

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526. 6

https://youtu.be/fjV_a3kt-mo

Preliminary Evalvaton W=

Preliminary Evaluation B

- Benchmark
— GNU Coreutils
— ~1-5k SLOC for each test program

Preliminary Evaluation MU

- Benchmark
— GNU Coreutils
— ~1-5k SLOC for each test program

- Metric

— Speedups: the time spent on exploring
the same number of instructions

T; ine — Lt
Speedups : —baseline —_ “our 4

Tbasel ine

Tpaseline - €Xxisting approach
T,,r : our approach

Preliminary Evaluation \ R

. Benchmark - Results
— GNU Coredtils

— ~1-5k SLOC for each test program o ¢
2:: 8 o P
§- 7 &) .. ® .
w
- Metric 56 . c . ‘.
@ °
— Speedups: the time spent on exploring Es o % % ¢ —— 4 ° ‘.
the same number of instructions 3 o I e
£E4 @ ©
- o o
3 . o
Tpaseline — Tour 0 5 10 15 20 25 30 35 40
Speedups : X 100

T Utilities in GNU Coreutils
baseline

Figure 2: Scatter plot of the improvement in speedups
Tpaseline - €Xisting approach gu P P P P

T,,r : our approach

Preliminary Evaluation \ 2R

- Benchmark - Results
— GNU Coreutils
— ~1-5k SLOC for each test program o ¢
s ® °
g 7 o - — .
w
- Metric 56 . c . ‘.
® o
— Speedups: the time spent on exploring Es o % % ¢ —— 4 ° '.
the same number of instructions 3 ° I e
£E4 @ ©
- o o
3 . ©
Speedups . Tyasetine — Tour % 100 0 5 10 15 20 25 30 35 40

T Utilities in GNU Coreutils
baseline

Figure 2: Scatter plot of the improvement in speedups
Tpaseline - €Xisting approach gu P P P P

T,,r : our approach — FastKLEE can reduce by up to 9.1% time as the state-of-the-art
approach (i.e., KLEE)

Conclusion ¢ SMU_

. Contribution

— We present FastKLEE, which reduces the interpretation overheads for faster symbolic execution

Intermediate Traditional
Sourcecode | ———» _
-1 Representation(IR) & Symbolic Execution $

©
o

Type Inference A CheckList

Fast
System m Symbolic Execution

Phase | Phase Il

Improvement of Speedups (%)
o
o
°
°
o

FN
L]
o

w
©

0 5 10 15 20 25 30 35 40
Utilities in GNU Coreutils

Figure 2: Scatter plot of the improvement in speedups

- Future work

— Use FastKLEE to explore more valuable execution paths in software systems
« valuable: vulnerable and exploitable

Code: https://github.com/haoxintu/FastKLEE
Video demo: https://youtu.be/fi\VV a3kt-mo
Email: haoxintu.2020@phdcs.smu.edu.sg

(Please feel free to pull requests or raise any questions if you have!)

https://github.com/haoxintu/FastKLEE
https://youtu.be/fjV_a3kt-mo
mailto:haoxintu.2020@phdcs.smu.edu.sg

