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(1) Observation
– The number of interpreted instructions tends to

be huge (several billion only in one hour run)

(2) Overheads in current symbolic execution
– The color depth represents the overheads of 

an interpreted instruction
– All instructions are equal

Interpretation

Can we reduce the overheads of interpreted instructions
for faster symbolic execution?

...…
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– Inspired by Type Inference system [1]
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• Advantage: overheads in FastKLEE
– Interpretation overheads for some instructions 

are reduced

Reduced overheads

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477–526.
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3. Type inference and produce CheckList
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4. Conduct faster symbolic execution
$ fastklee [options] ./cat.bc --sym-args 0 1 
10  --sym-args 0 2 2  --sym-files 1 8
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• Results• Benchmark
– GNU Coreutils 

– ~ 1-5k SLOC for each test program

• Metric
– Speedups: the time spent on exploring

the same number of instructions

• !"#$%&'(% : existing approach
• !)*+ : our approach – FastKLEE can reduce by up to 9.1% time as the state-of-the-art 

approach (i.e., KLEE)
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• Contribution
– We present FastKLEE, which reduces the interpretation overheads for faster symbolic execution

• Future work
– Use FastKLEE to explore more valuable execution paths in software systems

• valuable: vulnerable and exploitable

Code: https://github.com/haoxintu/FastKLEE

Video demo: https://youtu.be/fjV_a3kt-mo

Email: haoxintu.2020@phdcs.smu.edu.sg

(Please feel free to pull requests or raise any questions if you have!)

https://github.com/haoxintu/FastKLEE
https://youtu.be/fjV_a3kt-mo
mailto:haoxintu.2020@phdcs.smu.edu.sg

