NNNNNNNNNNNNNNNNNNN

FastKLEE: Faster Symbolic Execution via
Reducing Redundant Bound Checking of Type-Safe Pointers
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(1) Observation

— The number of interpreted instructions tends to
be huge (several billion only in one hour run)
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(1) Observation (2) Overheads in current symbolic execution
— The number of interpreted instructions tends to — The color depth represents the overheads of
be huge (several billion only in one hour run) an interpreted instruction

— All instructions are equal

Elapsed: 01: 00: 04

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633 ——

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths = 125017
KLEE: done: generated tests = 65
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(1) Observation

Elapsed: UT: UL U4

KLEE: done: explored paths = 125017

KLEE: done: avg. constructs per query = 74
KLEE: done: total queries = 8859

KLEE: done: valid queries = 6226

KLEE: done: invalid queries = 2633

KLEE: done: query cex = 8859

KLEE: done: total instructions = 605113213|
KLEE: done: completed paths = 125017

KLEE: done: generated tests = 65

Interpretation

(2) Overheads in current symbolic execution

Can we reduce the overheads of interpreted instructions
for faster symbolic execution?
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* Key insight
— Only a small portion of memory-related
instructions need bound checking
— Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

— Inspired by Type Inference system [1]

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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* Key insight

— Only a small portion of memory-related
instructions need bound checking

— Reduce interpreting overhead of most
frequently interpreted ones (i.e.,

load/store instruction)

— Inspired by Type Inference system [1]

Inference algorithm
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x SAFE/SEQ Memory-safe
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[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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* Key insight
— Only a small portion of memory-related
instructions need bound checking
— Reduce interpreting overhead of most

frequently interpreted ones (i.e.,
load/store instruction)

— Inspired by Type Inference system [1]

- Advantage: overheads in FastKLEE

— Interpretation overheads for some instructions
are reduced

\\\
~
~

"~ Reduced overheads
Inference algorithm //
/
SAFE ‘
Pointer kinds c + SEQ
WILD

0101001010101

WILD  |1e10000101110

. Run-time checks | 1610160160101

— (0110101010110

C 1000101010101
0101101111001

0010101110101

Type checker x SAFE/SEQ Memory-safe

[1] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList



Intermediate

— .
Source code Representation(IR)

—

Type Inference
System

A CheckList

—
L SMU
~

SINGAPORE MANAGEMENT

Traditional
Symbolic Execution

Phase |

. Fast
Symbolic Execution
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O - Phase l: Introduce a Type Inference System to classify memory-related instruction types
— Unsafe memory instructions will be stored in CheckList

© - Phase Il: Conduct Customized Memory Operation in Fast symbolic execution
— Only perform checking for Unsafe memory instructions during interpretation
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- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE
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Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE
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Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE
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Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

v

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc
- Impementation
— KLEE [1] and Ccured [2]

Installation of FastKLEE

| )

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

v

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc
- Impementation !

— KLEE [1] and Ccured [2] 3. Type inference and produce CheckList

$ opt -load libccured.so -nescheck -stats

Installation of FastKLEE -time-passes < cat-linked.bc >& /dev/null

| )

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526.
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1. Compile the source code
$ clang -emit-llvm -c cat.c -o cat.bc

v

2. Instrument IR for type inference

$ llvm-link cat.bc neschecklib.bc -o cat-linked.bc

- Impementation !
— KLEE [1] and Ccured [2] 3. Type inference and produce CheckList
$ opt -load libccured.so -nescheck -stats

Installation of FastKLEE

-time-passes < cat-linked.bc >& /dev/null v

4. Conduct faster symbolic execution

$ fastklee [options] ./cat.bc --sym-args 0 1
10 --sym-args 0 2 2 --sym-files 1 8

| )

Full video demo: https://voutu.be/fi\VV a3kt-mo

[1] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs. In OSDI'08. USENIX Association, USA, 209-224.
[2] Ccured: George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer. 2005. CCured: type-safe retrofitting of legacy software. ACM Trans. Program. Lang. Syst. 27, 3 (May 2005), 477-526. 6
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T,,r : our approach — FastKLEE can reduce by up to 9.1% time as the state-of-the-art
approach (i.e., KLEE)
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. Contribution

— We present FastKLEE, which reduces the interpretation overheads for faster symbolic execution
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Figure 2: Scatter plot of the improvement in speedups

- Future work

— Use FastKLEE to explore more valuable execution paths in software systems
« valuable: vulnerable and exploitable

Code: https://github.com/haoxintu/FastKLEE
Video demo: https://youtu.be/fi\VV a3kt-mo
Email: haoxintu.2020@phdcs.smu.edu.sg

(Please feel free to pull requests or raise any questions if you have!)
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