
1

RemGen: Remanufacturing A Random Program
Generator for Compiler Testing

The 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE 2022)

Haoxin Tu, He Jiang, Xiaochen Li, Zhilei Ren, Zhide Zhou
(Dalian University of Technology)

Lingxiao Jiang (Singapore Management University)

Outlines

2

q Background

q Motivation

q Approach
§ RemGen

q Evaluation

q Conclusion

Part 1: Background

3

What is a compiler？

4

q Two mainstream compilers
– GCC (created by 1987)

• ~ 5,000,000 lines of code

– LLVM (created by 2003)

• ~ 1,600,000 lines of code

q Implementation of compilers is complex
• they can be unreliable and buggy

Front-end

Back-end

Compilers are important but unreliable

5

Improving the reliability of compilers is still a hot topic.

XcodeGhost Bug: affect 3418 apps

CVE-2009-1897: Kernel crash to Dos attack

• Cited from [1]

Constructing test programs for compiler testing

6

• Two primary approaches
– 1. Generation-based

• CCG [3], Csmith [4], and Yarpgen [5]
– 2. Mutation-based

• Orion [6], Athena [7], and Hermes [8]

• Observation: existing construction approaches all start from a random program generator!

Test
Programs

Step 2: program mutation
(e.g., code snippets deletion/insertion)

Test
Programs

Step 1: collect a seed program

Program Generator
(e.g., Csmith)

Part 2: Motivation

7

Motivation

8

• Complaints from compiler testing studies or compiler expertise
– Csmith has found bugs before, but current production compilers are already resilient to it (from [5,6])
– Compilers have now caught up with CCG (since it’s been pretty hard to spot crashes last time I tried.

(from CCG [1])
– I hadn’t run Csmith for a while and it turns out LLVM is now amazingly resistant to it, ran a million tests

overnight without finding a crash or miscompilation. (from John Regehr [9])
– Same with YARPGen. (from Dmitry Babokin [10])

Research question: Is it possible to make those generators effective again?

Program
Generator

Remanufacturing

9

• Definition [2]
– A process of bringing a used product to a “like new” product, which is being regarded as a

sustainable mode of manufacturing
• Applications

– Automobile, heavy-duty equipment, aerospace, machinery, medical devices, photocopiers, IT products [2]

[1]

Any chance to conduct remanufacturing on a program generator?

Preparation for remanufacturing1

Remanufacturing2

Testing the remanufactured product3

Leverage capabilities in program generators

10

• General workflow of a generator

• Key capabilities
– (1) they support various built-in functions to generate different new valuable code snippets
– (2) the context (i.e., one of the parameters used in the built-in functions) used in generating code

snippets can be reserved and then reused in a lightweight manner

makeBlock(Context, int nesting)
makeExpression(Context, int nesting)
… // built-in functions

Seed
initialization

1

Test-program
output

5

Functions building

Block building

Local context
initialization

Statements
building

4

3

Global context
initialization

2

Motivation

11

• An example

• Limitation of existing approaches
– Generation-based approaches: randomness
– Mutation-based approaches: (1) limited synthesize template to produce code snippets and (2) costly

• Our approach
– Leverage the unexplored capabilities in generators to synthesize new code snippets

Challenges

12

• 1. The synthesis of diverse code snippets with low effort
– We do not know what the trigger for a compiler bug looks like [4].
– Efforts in synthesizing code snippets should be lightweight

• 2. The selection of the bug-revealing code snippet for constructing test programs
– Not all code snippets are equal and only few can trigger bugs [12]
– limited computing or human resource

Part 3: Approach

13

Our approach: RemGen

14

• Highlight

A old program generator
(e.g., CCG)

Test
Programs

Step 2: program mutation
(e.g., code snippets deletion/insertion)

RemGen

A remanufactured generator
(e.g., RemCCG)

Test
Programs

Step 1: collect a seed program

15

RemGen: Overview

Preparation for remanufacturing Remanufacturing Testing the remanufactured product

Th
e

R
em

an
uf

ac
tu

re
d

Pr
og

ra
m

G
en

er
at

or
(e

.g
.,

R
em

C
C

G
)

Preparation Process

An
O

ld
Pr

og
ra

m
G

en
er

at
or

(e
.g

.,
C

C
G

)

Inspect

Disassemble

Preprocess subparts

Remanufacturing Process

Functions building

Global context
initialization

Block building

Local context
initialization

Code snippets
synthesis

2

3

Statements
building

Context

Test-program output

Seed initialization 1

Reassemble

6

Code snippet
selection

!", !$,!%…

5

!&

!': grammar coverage
of code snippet 8

Grammar

4 7

Testing Process

BugsCompilers

Mutation-based

Generation-based

Test
Programs

Test
Programs

16

RemGen: Preparation process

• Inspect
– Checking the functionality from the input generator’s “appearances”

• Disassemble
– Decomposing the test program generation components to be modularized

• Preprocess subparts
– Reconstructing required components (e.g., built-in functions) to be easily integrated with other

components

17

RemGen: Remanufacturing process

• Diverse code snippets synthesis (grammar-aided)
– Collect the required context (i.e., global and local)

• Low effort

– Invoke the built-in functions to generate new code snippets

– utilize our new “diversity”: grammar coverage
• the number of grammar rules (e.g., if or for statements) invoked during the synthesis

• Remanufacturing: two new components
– Code snippets synthesis
– Code snippet selection

6

18

RemGen: Remanufacturing process

• Bug-revealing code snippet selection
– Leverage grammar coverage in the prior component
– Order produced code snippets

• Calculate the sum of the square of each grammar coverage
– Integrate the selected code snippet to construct bug-revealing test program

• Reassemble

7

• Testing process
– More details in evaluation part

Part 3: Evaluation

19

Experimental Setup

20

• Test settings
– For RQ1, we run over the same compiler versions used in [15] (GCC-4.4.3, LLVM-2.6)

• Running 90 hours 10 times, count the average number of bugs detected

– For RQ2, we run over current development versions of two compilers
• Run RemCCG over the latest version of compilers

• We remanufactured an old program generator CCG into RemCCG under RemGen

• Research questions
– RQ1: Can RemCCG boost both generation-based and mutation-based approaches for compiler testing?
– RQ2: Can RemCCG find new compiler bugs in practice?

Evaluation (1/2)

21

• RQ1: Can RemGen boost generation-based approaches for compiler testing?
– Compare with generation-based approach: CCG [1] (baseline)
– Compare with mutation-based approach: Hermes [8]

• Use CCG/RemCCG to generate seed programs

Evaluation (2/2)

22

• RQ2: Can RemCCG find new compiler bugs in practice?

Discussion

23

• Effectiveness of the two proposed components

– we compare RemCCG with its variants

• Comparison with Csmith [4] and YARPGen [5]
– Find 164%/363% and 120%/595% more bugs than Csmith and YARPGen, in GCC/LLVM, respectively

– This is reasonable due to the different design goal between those tools

• Limitation of RemCCG

– Inherits the limitation from CCG: can only find two kinds of (i.e., crash and performance) bugs

Part 5: Conclusion

24

25

Conclusion

Code: https://github.com/haoxintu/RemCCG
Email: haoxintu.2020@phdcs.smu.edu.sg
(Please feel free to pull requests or raise any questions if you have!)

mailto:haoxintu.2020@phdcs.smu.edu.sg

References

26

[1] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward understanding compiler bugs in GCC and LLVM. In Proceedings of the 25th
International Symposium on Software Testing and Analysis (ISSTA 2016). Association for Computing Machinery, New York, NY, USA, 294–305.
[2] Mitsutaka Matsumoto, Shanshan Yang, Kristian Martinsen, and Yasutaka Kainuma. 2016. Trends and research challenges in remanufacturing. International
Journal of Precision Engineering and Manufacturing-Green Technology 3 (01 2016), 129–142.
[3] https://github.com/Mrktn/ccg.git
[4] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In PLDI 2011. Association for Computing
Machinery, New York, NY, USA, 283–294.
[5] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen. Proc. ACM Program. Lang. 4, OOPSLA,
Article 196 (November 2020), 25 pages.
[6] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI '14).
[7] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via guided stochastic program mutation. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2015).
[8] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live code mutation. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA 2016).
[9] https://twitter.com/johnregehr/status/1134866965028196352
[10] https://twitter.com/DmitryBabokin/status/1134907976085516290
[11] https://github.com/Mrktn/ccg/blob/master/README
[12] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John Regehr. 2013. Taming Compiler Fuzzers. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). Association for Computing Machinery, New York, USA, 197–208.
[13] https://github.com/antlr/grammars-v4/blob/master/c/C.g
[14] https://github.com/protocolbuffers/protobuf
[15] Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie. 2016. An empirical comparison of compiler testing techniques.
In Proceedings of the 38th International Conference on Software Engineering (ICSE '16). Association for Computing Machinery, New York, NY, USA, 180–190.

27

Thank you && Questions?

RemGen: Remanufacturing A Random Program
Generator for Compiler Testing

The 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE 2022)

Haoxin Tu, He Jiang, Xiaochen Li, Zhilei Ren, Zhide Zhou
(Dalian University of Technology)

Lingxiao Jiang (Singapore Management University)

