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Part 1: Background
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What is a compiler？
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q Two mainstream compilers
– GCC (created by 1987)

• ~ 5,000,000 lines of code

– LLVM (created by 2003)

• ~ 1,600,000 lines of code

q Implementation of compilers is complex
• they can be unreliable and buggy

Front-end

Back-end



Compilers are important but unreliable
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Improving the reliability of compilers is still a hot topic.

XcodeGhost Bug: affect 3418 apps

CVE-2009-1897: Kernel crash to Dos attack

• Cited from [1]



Constructing test programs for compiler testing
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• Two primary approaches
– 1. Generation-based

• CCG [3], Csmith [4], and Yarpgen [5]
– 2. Mutation-based

• Orion [6], Athena [7], and Hermes [8]

• Observation: existing construction approaches all start from a random program generator!

Test
Programs

Step 2: program mutation
(e.g., code snippets deletion/insertion)

Test
Programs

Step 1: collect a seed program

Program Generator
(e.g., Csmith)



Part 2: Motivation
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Motivation
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• Complaints from compiler testing studies or compiler expertise
– Csmith has found bugs before, but current production compilers are already resilient to it (from [5,6]) 
– Compilers have now caught up with CCG (since it’s been pretty hard to spot crashes last time I tried.

(from CCG [1])
– I hadn’t run Csmith for a while and it turns out LLVM is now amazingly resistant to it, ran a million tests 

overnight without finding a crash or miscompilation. (from John Regehr [9]) 
– Same with YARPGen. (from Dmitry Babokin [10])

Research question: Is it possible to make those generators effective again?

Program
Generator



Remanufacturing
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• Definition [2]
– A process of bringing a used product to a “like new” product, which is being regarded as a

sustainable mode of manufacturing
• Applications

– Automobile, heavy-duty equipment, aerospace, machinery, medical devices, photocopiers, IT products [2]

[1]

Any chance to conduct remanufacturing on a program generator?

Preparation for remanufacturing1

Remanufacturing2

Testing the remanufactured product3



Leverage capabilities in program generators
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• General workflow of a generator

• Key capabilities
– (1) they support various built-in functions to generate different new valuable code snippets 
– (2) the context (i.e., one of the parameters used in the built-in functions) used in generating code 

snippets can be reserved and then reused in a lightweight manner

makeBlock(Context, int nesting)
makeExpression(Context, int nesting)
… // built-in functions

Seed
initialization

1

Test-program
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Motivation
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• An example

• Limitation of existing approaches
– Generation-based approaches: randomness
– Mutation-based approaches: (1) limited synthesize template to produce code snippets and (2) costly

• Our approach
– Leverage the unexplored capabilities in generators to synthesize new code snippets



Challenges
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• 1. The synthesis of diverse code snippets with low effort
– We do not know what the trigger for a compiler bug looks like [4].
– Efforts in synthesizing code snippets should be lightweight 

• 2. The selection of the bug-revealing code snippet for constructing test programs
– Not all code snippets are equal and only few can trigger bugs  [12]
– limited computing or human resource



Part 3: Approach
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Our approach: RemGen

14

• Highlight

A old program generator
(e.g., CCG)

Test
Programs

Step 2: program mutation
(e.g., code snippets deletion/insertion)

RemGen

A remanufactured generator
(e.g., RemCCG)

Test
Programs

Step 1: collect a seed program
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RemGen: Overview

Preparation for remanufacturing Remanufacturing Testing the remanufactured product
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Disassemble

Preprocess subparts

Remanufacturing Process
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RemGen: Preparation process

• Inspect
– Checking the functionality from the input generator’s “appearances”

• Disassemble
– Decomposing the test program generation components to be modularized

• Preprocess subparts
– Reconstructing required components (e.g., built-in functions) to be easily integrated with other 

components
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RemGen: Remanufacturing process

• Diverse code snippets synthesis (grammar-aided)
– Collect the required context (i.e., global and local)

• Low effort

– Invoke the built-in functions to generate new code snippets

– utilize our new “diversity”: grammar coverage
• the number of grammar rules (e.g., if or for statements) invoked during the synthesis

• Remanufacturing: two new components
– Code snippets synthesis
– Code snippet selection

6
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RemGen: Remanufacturing process

• Bug-revealing code snippet selection
– Leverage grammar coverage in the prior component
– Order produced code snippets

• Calculate the sum of the square of each grammar coverage
– Integrate the selected code snippet to construct bug-revealing test program

• Reassemble

7

• Testing process
– More details in evaluation part



Part 3: Evaluation
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Experimental Setup
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• Test settings
– For RQ1, we run over the same compiler versions used in [15] (GCC-4.4.3, LLVM-2.6)

• Running 90 hours 10 times, count the average number of bugs detected

– For RQ2, we run over current development versions of two compilers
• Run RemCCG over the latest version of compilers

• We remanufactured an old program generator CCG into RemCCG under RemGen

• Research questions
– RQ1: Can RemCCG boost both generation-based and mutation-based approaches for compiler testing?
– RQ2: Can RemCCG find new compiler bugs in practice? 



Evaluation (1/2)
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• RQ1: Can RemGen boost generation-based approaches for compiler testing?
– Compare with generation-based approach: CCG [1] (baseline)
– Compare with mutation-based approach: Hermes [8]

• Use CCG/RemCCG to generate seed programs



Evaluation (2/2)
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• RQ2: Can RemCCG find new compiler bugs in practice? 



Discussion
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• Effectiveness of the two proposed components

– we compare RemCCG with its variants

• Comparison with Csmith [4] and YARPGen [5]
– Find 164%/363% and 120%/595% more bugs than Csmith and YARPGen, in GCC/LLVM, respectively

– This is reasonable due to the different design goal between those tools

• Limitation of RemCCG

– Inherits the limitation from CCG: can only find two kinds of (i.e., crash and performance) bugs



Part 5: Conclusion
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Conclusion

Code: https://github.com/haoxintu/RemCCG
Email: haoxintu.2020@phdcs.smu.edu.sg
(Please feel free to pull requests or raise any questions if you have!)

mailto:haoxintu.2020@phdcs.smu.edu.sg
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