
Boosted Symbolic Execution 
for Software Reliability and Security

1

Qualifying Exam by Haoxin TU

November 18, 2021



Outlines

2

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Outlines

3

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Background: software is everywhere

4

Programs are still written by humans, 
and will be written by humans

To Err is Human Software Bugs

Automated Test Generation: A Journey from Symbolic Execution to Smart Fuzzing and Beyond：https://people.eecs.berkeley.edu/~ksen/slides/sen-sefm-2019.pdf (Keynote by Koushik Sen)

https://people.eecs.berkeley.edu/~ksen/slides/sen-sefm-2019.pdf


Background: bugs are always terrible

5

In short, bugs degrade reliability and security of software!

A crash

Security flaws

Even worse …
Vulnerability By Type (1999-2020)

(https://www.cvedetails.com/vulnerabilities-by-types.php)

https://www.cvedetails.com/vulnerabilities-by-types.php


Outlines

6

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Background: reliability

7

A failure (bug) is always triggered by an input

What kinds of inputs should we generate to trigger bugs?
(Depends on different types of software under test)

q What is software reliability?
– The extent to which software performs intended functions without a failure (bug)

35231+15200-2055
45*11112121
…



Background: security

8

• Find bugs • Find important bugs and prove them
• (An exploitable bug == A vulnerability)

From improving software reliability to security

q What is software security?
– The extent to which software continue to function correctly under malicious attacks



Outlines

9

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Symbolic 
Execution

Engine

SMT solver

Path
constraints

Satisfying
Assignments

Test cases

Background: symbolic execution (1/4)

10

q What is symbolic execution?
– Proposed in 1976*, one of the most popular program analysis techniques, which scales for

many software testing and computer security applications 

Test
program

*James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.

Symbolic
values

• Key idea

Symbolic Execution (referred to as SE)



Background: symbolic execution (2/4)

11

q A toy example

int bad_abs(int x) 
{

if (x < 0)
return –x;

if (x == 1234)
return –x;

return x;
}

x = 1234

x < 0

x < 0 x >= 0

return x

x != 1234

return -x

return -x

x = 1234
x = -2

x = 3x = 1234

test1.out

TRUE

TRUE FALSE

FALSE

x = *

test2.out test3.out

x < 0;
x >= 0 && x = 1234;
x >= 0 && x != 1234;
(path constraints)

test1.out
test2.out
test3.out
(test cases)



Background: symbolic execution (3/4)

12

q How could that work?

• Execute the program with symbolic inputs

• Represent equivalent execution paths with path constraints

• Solve path constraints to obtain one representative input that exercises the 
program to go down that specific path 

Path constraints Constraint Solver

Worked!



Background: symbolic execution (4/4)

13

q Why we need it?

https://www.darpa.mil/news-events/cyber-grandchallenge

• Milestone: DARPA Cyber Grand Challenge (CGC)
• Ability of each team:

• Automatic vulnerability finding, patching, and exploit generation at run-time

Symbolic execution is an integral part in the approaches of TOP 3 winning teams!

• Reason 1 : Software is unreliable and unsecure
• Advanced software testing and verification approaches should be used

• Reason 2 : Symbolic execution is a promising approach
• Has been used in many domains

• high-coverage test generation, automated debugging, automated program
repair, exploit generation, wireless sensor networks, online gaming, …

• Has been used in many program languages
• C/C++, C#, Java, Python, JavaScript, .Net, Ruby, …

https://www.darpa.mil/news-events/cyber-grandchallenge


Outlines

14

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Background: types of SE (1/3)

15

q Static SE and dynamic SE

• Static (classic SE)
• Fully symbolic execution

• Practical issue:
• Constraint solver limitations

• dealing with complex path constraints 

• Dynamic (modern SE)
• Mix concrete and symbolic execution
• Also called concolic execution

• Benefits:
• More effective
• More practical

The ability of constraint solver improved greatly!



Background: types of SE (2/3)

16

q Online SE and Offline SE

One	path
at	a	time

Re-executed
every	time

Fork	at	
branches

Online Offline

• Main issue: Hit Resource Cap • Main issue: Inefficient



Background: types of SE (3/3)

17

q Source code-based SE and binary-based SE

Source code

SE Engine Test cases

Binary code

SE Engine Test cases



Outlines

18

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Main challenges: path explosion (1/5)

19
Seo, Hyunmin, and Sunghun Kim. "How we get there: a context-guided search strategy in concolic testing." Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software 
Engineering. ACM, 2014.

• Possible solutions
1. Random search (DFS and BFS)
2. Coverage-guided search

• consider new coverage

q How does symbolic execution deal with path explosion?



Main challenges: memory modeling (2/5)

20

q How does the engine handle symbolic loads or symbolic writes? 

1. int array [N] = { 0 };
2. array [i] = 10; // i symbolic 
3. assert(array[j] != 0); // j symbolic 

• Possible solutions
1. Fully symbolic

• consider any possible outcome 
2. Fully concrete

• consider one possible outcome 
3. Partial symbolic and concrete

• concretize writes, 
• concretize loads when hard 

N states 
accurate but not scale

1 state
scale but not accurate

K states
scale but (in) accurate



Main challenges: environment modeling (3/5)

21

q How does the engine handle interactions across the software stack?

Run

• Possible solutions
1. Fully modeling the environment
2. Partially modeling the environment
3. Native execution



Main challenges: constraint solving (4/5)

22

q How does a constraint solver handle complex constraints?

SAT or UNSAT?

• Bottleneck
1. NP Complete problem

• (although practical in practice)
2. Dominates the runtime

• Possible solutions
1. Irrelevant constraint elimination 
2. Incremental solving 
3. Caching



Main challenges: test-case generation (5/5)

23

q How does symbolic execution generate structured test cases?

(Byte-level)

Test cases

(From SE)

• Possible solutions
1. Grammar-based generation

• Use grammar specification to guide generation
2. Program mutation

• Modifying existing programs



Outlines

24

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Related work (overall picture)

25

Boosting symbolic execution SE for structured test-case generation

SE for vulnerability detection

SE for Automatic Exploit Generation (AEG)

PSPA (FSE’ 20)

SymCC (USENIX Security’20)

KLEE (OSDI’ 08)

Angr (S&P’ 16)

S2E (ASPLOS’ 11)

SymQEMU (NDSS’ 21)

Test generation using symbolic grammars (FSE’ 07)

Driller (NDSS’ 16) QSYM (USENIX Security’ 18)

Grammar-based white-box fuzzing (PLDI’ 08)

Grammar-agnostic symbolic execution (FSE’ 21)

SAVIOR (S&P’ 20)

Stack-overflow based Heap-overflow based

AEG (NDSS’ 11)

Mayhem (S&P’ 12)
Revery (CCS’ 18)

Source code-based SE engine

Binary-based SE engine



Outlines

26

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Boosting SE : KLEE (OSDI’08)

27

• Solution
– Based on symbolic execution and constraint solving techniques

• KLEE aims to resolve three scalability challenges
1. Exponential number of paths

• Random path search
• Coverage-optimized search

2. Expensive constraint solving
• Eliminating irrelevant constraints
• Caching solution

3. Interaction with environment
• Support for symbolic command line arguments, files, links, pipes, etc.

qProblem: Testing System Code Is Hard

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs”. In Proceedings of the 8th USENIX 
conference on Operating systems design and implementation (OSDI'08). USENIX Association, USA, 209–224.



Boosting SE : KLEE (OSDI’08)

28

• KLEE Architecture

LLVM 
bitcode

K L E ESymbolic
Environment

Constraint Solver (STP)

x = 3

x = -2

x = 1234

x = 3

C code

x ³ 0
x ¹ 1234

L
L
V
M



Boosting SE : KLEE (OSDI’08)

29

qResults are promising

• Automatically generate high coverage test suites
– Over 90% on average on ~160 user-level apps

• Find deep bugs in complex systems programs
– Including higher-level correctness ones

• Pros
ü High coverage grantee
ü Good bug-finding capability

• Cons
o Path exploration strategy is simple
o Lack of support symbolic write/read, float point, etc.



Boosting SE

30

Approaches Main ideas Pros and cons

KLEE(OSDI’ 08)

1. Random and Coverage-optimized search
2. Eliminating irrelevant constraints and caching

3. Support for environment modeling

ü High code coverage and good
bug-finding capability

o Search strategies are simple

o Lack of support (e.g., float point)

S2E (ASPLOS’ 11) 1. Selective symbolic execution
2. Relaxed execution consistent model

ü Scale to testing large real systems
o High overhead

Angr (S&P’ 16)
1. Reproduce many existing approaches in offensive 

binary analysis in a coherent framework 

2. Present the different analyses and the challenges

ü A unified framework for
effective binary analysis 

o High overhead (interpreting)

SymCC
(USENIX Security’ 20)

1. Compilation-based (rather than interpreting) symbolic 
execution for source code/binary

2. Perform the instrumentation on the IR level

(Programming language independent)

ü Fast symbolic execution
ü Architecture independent and low

implementation complexity

o Offline (Inefficiency issue)SymQEMU(NDSS’ 21)

KLEE was improved …



Outlines

31

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Improving reliability of software

32

q Target software which needs structured test inputs (e.g., compilers)

• How to generate valid test programs for compiler testing?

Compiler testingCan symbolic execution help?



Improving reliability of software

33

• Main idea
• Uses symbolic grammars that balance the random enumeration test generation and 

directed symbolic test generation

q CESE (FSE’ 07)

R. Majumdar and R.-G. Xu, “Directed test generation using symbolic grammars,” in The 6th Joint Meeting on European software engineering conference and the ACM SIGSOFT symposium on the foundations 
of software engineering: companion papers, New York, NY, USA, Sep. 2007, pp. 553–556.

1. Grammar for SimpCalc inputs

“11+11” ✓
“11+1x” ✘

2. Symbolic grammar



Improving reliability of software

34

q CESE (FSE’ 07)

• Pros
ü Generate structured test cases
ü Improve the code coverage compared to existing single random testing or
symbolic execution

• Cons
o Limited scope
o Need grammar specification



Improving reliability of software

35

CESE was improved …

Approaches Main ideas Pros and cons

CESE (FSE’07)

Grammar-based
fuzzing (PLDI’08)

Grammar-agnostic
SE (ISSTA’21)

1. Combine the advantage of selective enumerative
generation with symbolic execution

2. The use of symbolic grammars that balance the two 
competing requirements

ü Achieves better coverage on
structured test cases

o Limited scope

o Need grammar specification

1. Generation of higher-level symbolic constraints

2. A custom constraint solver that solves constraints on 
symbolic grammar tokens.

1. Symbolize tokens instead of input bytes

2. Collecting the byte-level constraints of token values

3. Token symbolization and constraints solving

ü Applicable to large software
(e.g., JavaScript interpreter)

o Need grammar specification

ü No need grammar 

ü Achieves better coverage
and speedups

o Limited scope (simple Java)



Outlines

36

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Improving security of software

37

q Question: Given a program, how to find vulnerabilities and generate 
exploits for them automatically?

Vulnerability
Detection

Automatic Exploit
Generation

• Random testing (Fuzzing)
• Inefficiency

• Symbolic execution
• Path explosion

• Hybrid testing
• Combine fuzzing and symbolic execution

• Stack overflow based
• Restore stack layout

• Heap overflow based
• Restore heap layout



Outlines

38

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Improving security of software

39

Fuzzing vs Symbolic execution

Fuzzing Wins Symbolic execution Wins

q Driller (NDSS’ 16)



Improving security of software

40

q Driller (NDSS’ 16)
• Main idea

• Combine fuzzing and symbolic execution to leverage their strengths while mitigating 
their weakness



Improving security of software

41

q Results

• Pros
ü Complement fuzzing and symbolic execution
ü Explore deep code region

• Cons
o Performance issue inherited from symbolic execution



Improving security of software

42

Driller was improved …

Approaches Main ideas Pros and cons

Driller (NDSS’16)

1. Combine fuzzing and symbolic execution

2. Fuzzing finds solutions for general conditions

3. SE finds solutions for specific conditions

1. Tightly integrate the symbolic emulation with the 
native execution into hybrid fuzzing

2. Optimistically solve constraints and prune 
uninteresting basic blocks

ü Fast symbolic execution 
through efficient emulation.

o High implementation effort
o Coverage-guided search

ü Improve vulnerability 
detection capability

o Incomplete bug labeling

1. Replace the coverage-centric design

2. Enhance hybrid testing with bug-driven 
prioritization and bug-guided verification

QSYM (USENIX 
Security’ 18)

SAVIOR (S&P ’20)

ü Complement fuzzing and
symbolic execution

ü Could identify deep bugs
o Performance issue



Outlines

43

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Improving security of software

44

q What is Automatic Exploit Generation (AEG)?

Automatically Analyze vulnerabilities & Generate Exploits

AEG

Program Exploits

I = input();
if (I < 42)
vuln();

else 
safe();



Improving security of software

45

q AEG (NDSS’11)

• Problem
• How to make AEG more practical?

• Solution

T. Avgerinos, S. K. Cha, B. L. Tze Hao, and D. Brumley. “AEG: Automatic Exploit Generation”. In Proceedings of the 18th Annual Network and Distributed System Security Symposium (NDSS’11), 2011.



Improving security of software

46

q AEG (NDSS’11)

• Symbolic execution (Preconditioned)
• Goal: Discover “buggy” predicates
• Key insights:

• Exploring: only explore buggy paths (Fast)
• Searching: buggy (most likely to exploit)-path-first (Fast still)

• Search for exploitable path in paths along buggy paths

• Dynamic binary analysis
• Goal: Test exploitability of buggy path
• Key insight:

• Generate runtime information and exploit constraints



Improving security of software

47

q AEG (NDSS’11) - Results

• Pros
ü An end-to-end system for automatic 

exploit generation 
ü Fast vulnerability discovery and

effective exploit generation

• Cons
o Need source code
o Only stack overflow based
o Performance issue

Analyzed 14 applications for 3 hours and 
generated 16 working exploits 



Improving security of software

48

Approaches Main ideas Pros and cons

AEG (NDSS’11)

1. Model exploit generation for control flow hijack 
attacks as a formal verification problem

2. Combine source code and binary level analysis

3. Precondition symbolic execution

1. Hybrid symbolic execution: actively managing 
execution paths without exhausting memory

2. Index-based memory modeling (Work on binary)

ü Balance between speed and 
memory requirements

o Only stack overflow based

ü An end-to-end system for
automatic exploit generation 

o Need source code

o Only stack overflow based

Mayhem (S&P’ 11)

Revery (CCS ’18)

1. Search for exploitable states in paths diverging from 
crashing paths (not in the same path)

2. Generate control-flow hijacking exploits for heap-
based vulnerabilities

ü Target on heap overflows

ü Improve exploit derivability 

o Limitations of diverging 
path exploration

AEG (NDSS’11) was improved …



Outlines

49

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
• Symbolic execution for bug detection

– Towards improving security of software
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Research gaps

50

Domains Existing solutions Limitations

Boosting
symbolic execution

1. Path exploration and memory modeling (KLEE)

2. Scalability and environment model (S2E)

3. Performance (SymCC, SymQEMU)

o Path exploration: coverage

guided or random

o Lack of security foundations

Structured test
case generation

1. Symbolic grammar (CESE)

2. Grammar constraints and costumed solver(PLDI’08)

3. Token-level symbolization (ISSTA’ 21)

1. Hybrid fuzzing (fuzzing + SE) (Driller)

2. Symbolic emulation for better performance (QSYM)

3. Bug-driven selection and verification (SAVIOR)

1. Exploit generation as formal verification (AEG)

2. Hybrid symbolic execution for efficiency (Mayhem)

3. Target heap overflow and diverging path (Revery)

Vulnerability
detection

Automatic 
exploit generation

o Limited scale of software

o Well-defined inputs (e.g., C)

can not be generated

o Bug-labeling strategy is

not complete (only UBSan)

o Limited scale of software

o Diverging path exploration

strategy is random

o Limited exploitable types



Outlines

51

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gaps
• Research plans and onging work
• Conclusion



Research plans

52

Plans Highlights Status

✔

✔

✔

✔

Symbolic dynamic 
memory allocation

for SE

1. Most SE engine models concrete address for dynamic
allocated memory

2. Tricky bugs may be triggered by different allocated
address; symbolic address can alleviate this problem

Ø Ongoing work

Ø Future work

(More investigation)

Ø Future work

(More invesDgaDon)

Ø Ongoing work

1. Grammar specificaDons for large soGware are usual
available (ANTLR supports 100+ grammars)

2. Scalable grammar-guided SE for test case generaDon

1. Path explosion is sDll a open and unaddressed challenge
2. Exploring buggy execuDon paths first under limited

resource can be useful for effecDve vulnerability detecDon

1. Effective and efficient diverging path exploration
(using SE rather than fuzzing)

2. Attack targets setting for generating working exploits

Bug-oriented path
exploration for SE

Automatic 
exploit generation

Grammar-guided
test generation

for compilers



Outlines

53

• Background
– What are software reliability and security?
– What is symbolic execution? Why we need it?
– Different types of symbolic execution

• Main challenges in symbolic execution
• Related work

– Towards boosting symbolic execution
– Towards improving reliability of software

• Symbolic execution for structured test-case generation
– Towards improving security of software

• Symbolic execution for vulnerability detection
• Symbolic exeuction for automatic exploit genenration

– Research gap
• Research plan and onging work
• Conclusion



Conclusion

54



References

55

[1] Automated Test Generation: “A Journey from Symbolic Execution to Smart Fuzzing and Beyond” (Keynote by Koushik Sen)
[2] Zhide Zhou, Zhilei Ren, Guojun Gao, He Jiang. “An empirical study of optimization bugs in GCC and LLVM”. JSS, 2021.
[3] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (July 1976), 385–394.
[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. “A Survey of Symbolic Execution 
Techniques”. ACM Computer Survey. 51, 3, Article 50 (July 2018), 39 pages.
[5] Seo, Hyunmin, and Sunghun Kim. "How we get there: a context-guided search strategy in concolic testing." Proceedings of the 22nd 
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2014.
[6] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008.” KLEE: unassisted and automatic generation of high-coverage tests for 
complex systems programs”. In Proceedings of the 8th USENIX conference on Operating systems design and implementation (OSDI'08). 
USENIX Association, USA, 209–224.
[7] C. Cadar and K. Sen, “Symbolic execution for software testing: three decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013.
[8] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for in-vivo multi-path analysis of software systems,” in Proceedings of 
the sixteenth international conference on Architectural support for programming languages and operating systems, New York, NY, USA, Mar. 
2011, pp. 265–278.
[9] S. Poeplau and A. Francillon, “SymQEMU: Compilation-based symbolic execution for binaries,” presented at the in Proceedings of the 
2021 Network and Distributed System Security Symposium, 2021.
[10] Y. Shoshitaishvili et al., “SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis,” in 2016 IEEE Symposium on 
Security and Privacy (SP), May 2016, pp. 138–157.
[11] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t interpret, compile!,” in 29th USENIX Security Symposium, 2020, 
pp. 181–198.
[12] David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. 2020. “Past-sensitive pointer analysis for symbolic execution”. In 
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software 
Engineering (ESEC/FSE 2020). New York, NY, USA, 197–208.



References

56

q Acknowledgement
Some pictures are adapted from the presentation slides of above references. 

[13] R. Majumdar and R.-G. Xu, “Directed test generation using symbolic grammars,” in The 6th Joint Meeting on European software 
engineering conference and the ACM SIGSOFT symposium on the foundations of software engineering: companion papers, New York, NY,
USA, Sep. 2007, pp. 553–556.
[14] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on 
Programming Language Design and Implementation, New York, NY, USA, Jun. 2008, pp. 206–215.
[15] W. Pan, Z. Chen, G. Zhang, Y. Luo, Y. Zhang, and J. Wang, “Grammar-agnostic symbolic execution by token symbolization,” 
in Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Denmark, Jul. 2021, pp. 374–
387.
[16] N. Stephens et al., “Driller: Augmenting Fuzzing Through Selective Symbolic Execution,” presented at the Network and Distributed 
System Security Symposium, San Diego, CA, 2016.
[17] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. “QSYM: a practical concolic execution engine tailored for 
hybrid fuzzing”. In Proceedings of the 27th USENIX Conference on Security Symposium (SEC'18). USENIX Association, USA, 745–761.
[18] Y. Chen et al., “SAVIOR: Towards Bug-Driven Hybrid Testing,” in 2020 IEEE Symposium on Security and Privacy (SP), San Francisco, 
CA, USA, May 2020, pp. 1580–1596.
[19] T. Avgerinos, S. K. Cha, B. L. Tze Hao, and D. Brumley. “AEG: Automatic Exploit Generation”. In Proceedings of the 18th Annual 
Network and Distributed System Security Symposium (NDSS’11), 2011.
[20] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012. “Unleashing Mayhem on Binary Code”. In Proceedings 
of the 2012 IEEE Symposium on Security and Privacy (SP '12). IEEE Computer Society, USA, 380–394.
[21] Y. Wang et al., “Revery: From Proof-of-Concept to Exploitable,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and 
Communications Security, Toronto Canada, Oct. 2018, pp. 1914–1927.



57

Thank you && Questions?

Boosted Symbolic Execution 
for Software Reliability and Security

Qualifying Exam by Haoxin TU

November 18, 2021


