
IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 1

Detecting C++ Compiler Front-end Bugs via
Grammar Mutation and Differential Testing

Haoxin Tu, He Jiang, Zhide Zhou, Yixuan Tang, Zhilei Ren, Lei Qiao, and Lingxiao Jiang

Abstract—C++ is a widely used programming language with
complex grammars, and the C++ front-end is a critical part of
a C++ compiler. Although many techniques have been proposed
to test compilers, few studies are devoted to detecting bugs in
C++ compiler front-ends. In this study, we take the first step
to detect bugs in C++ compiler front-ends. To effectively detect
diverse types of bugs in compiler front-ends, two main challenges
need to be addressed, namely the acquisition of test programs
that are more likely to trigger bugs in compiler front-ends and
the bug identification from complicated compiler outputs. In this
paper, we propose a novel framework named CCOFT to detect
bugs in C++ compiler front-ends. To address the first challenge,
CCOFT implements a practical program generator. The generator
first transforms C++ grammars into a flexible structured format
and then utilizes an Equal-Chance Selection (ECS) strategy to
conduct structure-aware grammar mutation to generate diverse
C++ programs. Next, CCOFT employs a set of differential testing
strategies to identify various kinds of bugs in C++ compiler front-
ends by comparing complex outputs emitted by C++ compilers,
thus tackling the second challenge. Empirical evaluation results
over two mainstream compilers (i.e., GCC and Clang) show that
CCOFT greatly improves two state-of-the-art approaches (i.e.,
Dharma and Grammarinator) by 135% and 111% in terms of
the numbers of detected bugs, respectively. By running CCOFT
for three months, we have successfully reported 136 bugs for two
C++ compilers, of which 78 (57 confirmed, assigned, or fixed) for
GCC and 58 (10 confirmed or fixed) for Clang.

Index Terms—Reliability, software testing, compiler testing,
automated testing, compiler defect, front-end

I. INTRODUCTION

SOFTWARE systems developed by manifold programming
languages, such as C/C++, Java, Python, R, PHP, and

Kotlin, are everywhere, and all of those languages are devoted
to building systems that satisfy the desired requirements of
developers. Among the different kinds of programming lan-
guages, C++ is a widely used and popular one that exits over
40 years since its origin in 19791. It is not only a language

Haoxin Tu is with the School of Software, Dalian University of Tech-
nology, Dalian, China, and also with the School of Computing and In-
formation Systems, Singapore Management University, Singapore. E-mail:
haoxintu@gmail.com

He Jiang, Zhide Zhou, Yixuan Tang, and Zhilei Ren are with the
School of Software, Dalian University of Technology, Dalian, China, and
Key Laboratory for Ubiquitous Network and Service Software of Liaoning
Province. He Jiang is also with DUT Artificial Intelligence, Dalian, China. E-
mail: jianghe@dlut.edu.cn, cszide@gmail.com, tangyixuan@mail.dlut.edu.cn,
zren@dlut.edu.cn

Lei Qiao is with Beijing Institute of Control Engineering, Beijing, China.
Email: fly2moon@aliyun.com

Lingxiao Jiang is with the School of Computing and Information Systems,
Singapore Management University, Singapore. E-mail: lxjiang@smu.edu.sg

1https://www.stroustrup.com/TechRepublic-interview-Bjarne-Stroustrup.
pdf

defined by a specification but also includes a set of rich
toolsets [1]. The authoritative surveys (e.g., from JetBrain
[2]) show that the population of C++ users is at least 4.5
million with a steady growth of about 100,000 developers
every year. Among the various phases during the compilation
of programming languages, passing the front-end (including
lexical, syntactic, and semantic analysis) is usually the initial
step [3]–[5]. Therefore, compiler front-ends play an important
role in compilers. Specifically, due to the complicated C++
grammars and hand-written C++ compiler front-ends in mod-
ern compilers [6], [7], C++-related components are one of the
buggiest components in GCC and Clang (two widely used and
mature C++ compilers) [8], [9]. Typically, the task of compiler
front-ends is to report any error in an intelligible fashion
and then output the intermediate representation of the input,
which will be used in the following middle-end [10], [11].
Moreover, well-performed compiler front-ends can protect
software systems from talent attackers using compiler outputs
to exploit potential security vulnerabilities [12]–[15]. Thus, to
ensure the correctness and reliability of C++ compilers, it is
crucial to detect and fix bugs in C++ compiler front-ends.

Although many studies have been conducted on compiler
testing in the literature [16]–[24], few studies focus on testing
C++ compiler front-ends. In general, an approach for compiler
testing first employs some program generators to generate test
programs and feeds them to stress-test compilers. Then, the
approach compares either the outputs of distinct compilers or
the execution results of compiled programs to detect inconsis-
tencies in the outputs and thus potential compiler bugs. Csmith
[19] and Yarpgen [25] are two well-known C++ program gen-
erators, however, they mainly generate completely semantic
valid C++ test programs with limited C++ language features
(e.g., no “template” or “class”), which satisfy all grammar
and type-checking rules [26]. Such kind of C++ programs
is difficult to incur potential front-end bugs in compilers as
they are all assumed to be passed soon in compiler front-ends.
Besides the above tools, grammar-based approaches, such as
Dharma [27] and Grammarinator [28], can also be tuned to
generate C++ test programs with more features with the help
of C++ grammars. However, both Dharma and Grammarinator
are limited in generating diverse test programs that are more
likely to trigger bugs in compiler front-ends. Specifically,
Dharma is unable to cover all grammar rules and alternatives,
while Grammarinator struggles to operate complex AST (ab-
stract syntax tree) when the test programs become complex
(more details in Section III-A). The above limitations may
significantly obstruct the effectiveness of discovering bugs in
C++ compiler front-ends.* This article has been accepted for publication but has not been fully edited.

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 2

Due to the complexity of C++ grammars and the hardness
of testing hand-written C++ compiler front-ends, two techni-
cal challenges need to be addressed to effectively test C++
compiler front-ends. Firstly, the ability to generate diverse
test inputs is key to any software testing-related activities
[29]–[31]. In the realm of compiler testing, it is significantly
important as the test inputs are high-structured test programs.
Thus, we need to address the challenge of the acquisition of
test programs that are more likely to trigger bugs in C++
compiler front-ends. Secondly, compiler outputs are tricky.
For example, as GCC and Clang have different mechanisms in
the diagnostic system, their compiler outputs could be different
when compiling the same program. Furthermore, existing
approaches are unable to dispose of the complex compiler
outputs, which will make it difficult to identify potential
bugs in C++ compiler front-ends. Thus, we need to address
the challenge of the bug identification (i.e., expose buggy
behaviors to identify potential bugs) from complicated
compiler outputs.

In this paper, we propose a novel framework named C++
COmpiler Front-end Tester (CCOFT) to detect bugs in C++
compiler front-ends. To address the first challenge, CCOFT
implements a practical program generator. More specifically,
the generator first transforms C++ grammars into a flexible
structured format and then conducts structure-aware gram-
mar mutation with a strategy named Equal-Chance Selection
(ECS), thus generating diverse C++ test programs. To address
the second challenge, CCOFT employs a set of differential
testing strategies to identify different kinds of bugs in compiler
front-ends by comparing inconsistent compiler outputs.

To assess the effectiveness of CCOFT, we conduct an
extensive empirical evaluation over two mainstream compilers,
namely GCC and Clang. First, we compare CCOFT against
two state-of-the-art approaches, i.e., Dharma [27] and Gram-
marinator [28] for evaluating the bug-finding capability of
CCOFT. The results show that CCOFT can detect 40 bugs,
while Dharma and Grammarinator only detect 17 and 19 bugs
within the same testing period, achieving 135% and 111%
improvement, respectively. Second, the results also validate
the impact of ECS in CCOFT. By employing the ECS strategy,
CCOFT is able to detect 18 more bugs than its variant without
ECS, achieving over 82% improvement. Finally, we show the
promising practical bug-finding capability of CCOFT. Within
three months, we reported 136 bugs in C++ compiler front-
ends, of which 78 bugs (57 confirmed, assigned, or fixed) for
GCC and 58 bugs (10 confirmed or fixed) for Clang.

In summary, this paper makes the following contributions:

• We propose CCOFT, a testing framework aiming to detect
bugs in C++ compiler front-ends.

• We design a grammar mutation-based (equipped with
ECS) C++ program generator and leverage a set of
differential testing strategies to identify potential bugs.

• We implement CCOFT and empirically evaluate its ef-
fectiveness against two state-of-the-art approaches. More-
over, we reported 136 (67 confirmed, assigned, or fixed)
bugs for GCC and Clang, which clearly demonstrates the
practical bug-finding capability of CCOFT.

//s1.cc
1 typedef int T;
2 using typename :: T;
/* GCC−trunk output:
s1.cc:2:18: error: expected nested−name−specifier before ’T’ */

(a) Reject-valid (GCC Bug #95597)

//s2.cc
1 template <class> ;
/* GCC−trunk output:
s2.cc:1:18: error: expected unqualified−id before ’;’ token
Clang−trunk output:
//no error */

(b) Accept-invalid (Clang Bug #46231)

//s3.cc
1 decltype(auto) foo () {};
/*GCC−trunk output:
s3.cc:1:10: error: expected primary−expression before ’auto’
Clang−trunk output:
s3.cc:1:1: error: deduced return types are a C++14 extension */

(c) Diagnostic (GCC Bug #96103)

//s4.cc
1 struct g_class : decltype (auto) ... { };
/* GCC−trunk output:
s4.cc:1:35: internal compiler error: in

cxx_incomplete_type_diagnostic, at cp/typeck2.c:584 */

(d) Crash (GCC Bug #95672)

//s5.cc
1 void a () { .operator b }
/* GCC−trunk compile−time−hog */

(e) Time-out (GCC Bug #96137)

Fig. 1. Five bugs in C++ compiler front-ends

The remainder of this paper is organized as follows. Section
II presents illustrative examples and a quantitative study to
motivate the study. Section III describes the framework of
CCOFT. Empirical evaluation results are presented in Section
IV. The discussion, threats, and related work are described in
Sections V-VII. Section VIII concludes this paper.

II. MOTIVATION

In this section, we first present five examples to illustrate
potential bugs in C++ compiler front-ends. Then, we conduct
a quantitative study of historical compiler bugs to show the
prevalence and importance of those bugs.

A. Illustrative examples

Fig. 1 presents five bugs in C++ compiler front-ends found
by CCOFT. For the sake of clarity, in the rest of this paper, we
use the term “valid” to refer to a test program that is semantic
valid and use the term “invalid” to represent a test program
that is syntactic or semantic invalid. Based on the description
of the task of a compiler front-end [10], we categorize those
bugs into five types as follows.

Reject-valid. A C++ compiler front-end may reject a valid
program. Fig. 1(a) describes a GCC bug where the C++
compiler front-end of GCC rejects this valid program and
emits an unacceptable error message. The Reject-valid bug has
a high priority and should be considered equally important to

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 3

Fig. 2. Top 5 bug types of all the bugs of C++-related components in GCC

fix as those that lead to the wrong-code (the most important
bug in compilers) issue2.

Accept-invalid. In contrast to the Reject-valid bug, a C++
compiler front-end may accept an invalid program. Fig. 1(b)
shows a Clang bug where the C++ compiler front-end of Clang
accepts an empty declaration in a template declaration, which
violates the C++ standard and is correctly rejected by the C++
compiler front-end of GCC.

Diagnostic. Diagnostic messages are important to help
developers find and fix mistakes in their programs, while a
C++ compiler front-end may emit unclear or duplicated error
messages and even miss the exact location of an error diag-
nostic. Fig. 1(c) describes a bug that the C++ compiler front-
end of GCC outputs an unclear error message for the error of
deduced return type in C++, while the C++ compiler front-end
of Clang exactly reports the real reason. If developers compile
this program by GCC, it may be hard for them to debug and
fix the error based on the confusing compiling outputs, which
may delay the schedule of software development.

Crash. Given a valid or an invalid program, a C++ compiler
front-end may crash during compilation. Crash bugs can be
divided into two subtypes, namely Crash-on-valid and Crash-
on-invalid. Fig. 1(d) describes an invalid program which
includes an incomplete template pack expansion. This case
makes the C++ compiler front-end of GCC crash. This bug
exists in almost all versions of GCC before we reported it.

Time-out. A C++ compiler front-end may spend much time
analyzing a valid program. Fig. 1(e) shows a Time-out bug,
which makes the C++ compiler front-end of GCC stuck and
conducts an endless analysis.

All the five types of bugs in C++ compiler front-ends may
deeply impact the usability of compilers and even cause an
obstacle for developers to quickly learn and fix programming
errors [32] [33]. Even worse, as aforementioned in Section I,
they can also yield the compromise of critical software systems
[12]–[15].

B. A quantitative study of historical bugs
To further understand the importance of bugs in C++

compiler front-ends and motivate our study, we conduct a

2https://www.gnu.org/software/gcc/bugs/management.html

quantitative study of historical compiler bugs in this subsec-
tion. The previous study [8] on understanding compiler bugs
points out that the components used to implement a C++
compiler in GCC and Clang are more buggy compared to other
components. We further investigate the composition of bugs
ID with from 1 to 93,000 for the components related to C++.
Specifically, we collect bug reports from the GCC bug repos-
itory3. Here, we only collect GCC bug reports because GCC
has long development history and a clear keyword4 mechanism
to show bug types. Among all the collected 86,222 bug reports,
20,441 (23.7%) of them belong to the components related to
C++. Next, we categorized bugs of C++-related components
according to the keywords in each bug report. Fig. 2 shows the
Top 5 types of all bugs of C++-related components in GCC,
namely Crash-on-invalid, Reject-valid, Diagnostic, Crash-on-
valid, and Wrong-code, where the Wrong-code indicates the
compiler produces a wrong compiled program.

According to compiler front-end bug categories mentioned
in Section II-A, we were surprised that the Top 4 bug types
in Fig. 2 may relate to C++ compiler front-ends and we
wanted to know more details about bugs in compiler front-
ends. However, to the best of our knowledge, no prior study
focuses on analyzing bugs in compiler front-ends. Thereby, to
investigate how many bugs in the Top 4 bug types in Fig. 2 are
indeed in the compiler front-end rather than other components
in the compiler, we conducted a small-scale analysis of the
bugs in these Top 4 bug types. Specifically, we randomly
selected 100 fixed bugs for each type. Then, we manually
checked whether each bug in the selected 400 bugs is a front-
end bug. Due to our limited knowledge, we only confirmed
bugs that are definitely inside the compiler front-end. Even so,
the results showed that there are 69, 63, 52, and 72 bugs that
are bugs in the compiler front-end in 100 bugs of each type,
respectively. Thus, we can know that at least 64% of bugs
on average belong to the C++ compiler front-end of GCC.
Therefore, more advanced techniques and tools are needed to
help test C++ compiler front-ends and improve their quality.

Summary: Due to the importance of ensuring the reliability
of C++ compilers and the prevalence of bugs that are relevant
to C++ compiler front-ends, in this study, we design a novel
framework named CCOFT. Specifically, as mentioned in Sec-
tion I, it is non-trivial to generate test programs that are more
likely to trigger bugs in C++ compiler front-ends. To address
this challenge, we adopt a grammar mutation-based program
generation approach to generate diverse C++ test programs,
such as the sampled programs presented in Fig. 1. Then, the
compiler outputs can be complicated, and directly identifying
potential bugs from them is difficult. For example, as shown in
Fig. 1, test programs (a) and (b) make GCC and Clang yield
inconsistent outputs and on test program (c), two compilers
produce different diagnostic messages. We then leverage a
set of differential testing-based strategies to address such a
challenge.

3https://gcc.gnu.org/bugzilla/
4https://gcc.gnu.org/bugzilla/describekeywords.cgi

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 4

Fig. 3. The CCOFT Framework

III. FRAMEWORK OF CCOFT

In this section, we describe the design of our proposed
CCOFT framework. Fig. 3 shows the overall workflow of
CCOFT, which includes two parts, namely C++ program
generation and bug identification. The first part aims to
generate test programs that are more likely to trigger bugs
in C++ compiler front-ends, while the second part conducts
differential testing strategies to identify potential bugs.

As aforementioned in Section I, one of the most challenging
parts of testing compiler front-ends is the effectiveness of
generated test programs. We acknowledge that generating
lexical or syntactic invalid test programs are trivial and those
programs can also detect some bugs in compiler front-ends
to some extent. However, those bugs are too shadowed in
compilers. In this study, we target generating test programs
that are more likely to pass syntactic analysis and are possible
to pass semantic analysis thus detecting various bugs in C++
compiler front-ends. To do so, we opt for mutation-based
program generation approach as they are proven to be effective
in software testing [21], [31], [34]. Specifically, we design a
grammar mutation that mutates grammar directly rather than
test programs. The major benefit behind this is that grammati-
cally validness is guaranteed compared with existing mutations
on test programs directly. With the assistance of effective
C++ test programs, we conduct differential testing strategies
to identify bugs thus addressing the second challenge. To our
knowledge, this is the first work to leverage the differential
testing techniques to detect various kinds of compiler bugs in
front-ends.

A. C++ Program Generation

As C++ programs are highly structured, it may be ineffec-
tive when using random generation methods or well-known
mutation-based fuzzers (i.e., AFL [35] or LibFuzzer [36]) to
generate C++ test programs. Specifically, Existing state-of-the-
art approaches, such as Dharma [27] and Grammarinator [28],
also have major limitations on generating compiler front-end

bug-revealing test programs. For example, Dharma has trouble
in handling the use of undefined identifiers and can hardly
manifest the appearance of production rules. For small-scale
grammars such as XML5 or JSON6, it is possible to adjust it
to generate required test programs, but it is non-trivial to do so
when meeting the extremely sophisticated C++ grammars. It’s
worth noting that the capability of handling undefined iden-
tifiers could be key to effectively detecting bugs in compiler
front-ends [28]. As the errors of undefined identifiers often
happen in the very early stage of a compiler front-end, the
following logic, such as syntactic or semantic analysis, will
not be reached. This is also the reason why we aim to generate
those test programs that are more likely to pass in syntactic
analysis but maybe fail in semantic analysis. Secondly, an
alternative approach, Grammarinator, provides a configurable
distribution of the grammar rules. Unfortunately, it suffers
from the following limitations. First, the undefined identifiers
problem is not fully solved as it only supports a simple symbol
table to maintain trivial variables. However, there are many
types of identifiers in complex C++ grammars. Second, it
struggles in dealing with deeper recursion as it generates test
programs based on the AST construction and operation, which
is a time-consuming process (our experience shows that it gets
stuck if the recursive depth is large than 50) and thus impeding
the generation of complex test programs. We next detail how
our proposed approach works and addresses the limitations.

In this paper, we adopt a simple and effective approach
to facilitate the process of C++ program generation, which
includes two stages, i.e., the preparation stage and the mutation
stage. The preparation stage transforms C++ grammars into
a structured format file, the mutation stage executes the
structure-aware grammar mutation and then produces C++ test
programs. To clarify how the C++ program generator works,
we take a simplified C++ grammar for template declaration

5https://github.com/antlr/grammars-v4/blob/master/xml/
XMLcompilerfront-end.g4

6https://github.com/antlr/grammars-v4/blob/master/json/JSON.g4

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 5

1 Templatedeclaration
2 : Template "<" Templateparameter ">" Declaration
3 ;
4 Templateparameter
5 : Class Identifier?
6 | Typename Identifier?
7 ;

Fig. 4. A C++ Grammar of a simplified template declaration

(as shown in Fig. 4) as an example to describe the details of
the above two stages.

1) Preparation stage: To successfully generate test pro-
grams, we employ a C++ grammar and transform it into
a structured format file. Although the C++ grammars are
often publicly available (e.g., in ANTLR’s community [37])
and the structured formats are usually easy to obtain (e.g.,
JSON [38], Cpn’s Proto [39], and Protobuf [40]), not every
of the format can meet our requirement, i.e., it should be
flexible enough so that can be combined with existing mutation
engines. Therefore, in this paper, the C++ grammars are
finally transformed into the Protobuf format [40] (a language-
neutral, platform-neutral, extensible mechanism for serializing
structured data, but smaller, faster, and simpler). We choose
Protobuf for two reasons. First, it has a corresponding field
relationship with a normal grammar definition. For example,
it can transfer normal text to “required”, “?” to “optional”, and
“|” to “oneof ”, respectively. Besides the field of “required”,
other fields are alternative options in which we can choose the
probability to control whether a field (“optional” or “oneof ”) is
selected. Second, the Protobuf format can be easily combined
with a structure-aware mutator, e.g., libprotobuf-mutator. The
libprotobuf-mutator is able to effectively mutate “Protobuf”
inputs, as demonstrated for Compression and PNG 7.

For example, Fig. 4 describes a piece of C++ grammars
about template declaration, which includes five elements, i.e.,
“Template”, ,“<”,“Templateparameter”, “>”, and “Declara-
tion”. According to the corresponding relationship between the
grammar and the structured format, we obtain the structured
format file in Fig. 5. Each element in Fig. 4 is represented
as a standalone “message”, followed by the body under
special fields, such as “required”, “optional”, or “oneof ”,
numbering sequentially from 1. More specifically, in Fig. 4,
the “Template”, “<”, and “>” are three fixed elements when
transforming, while “Templateparameter” and “Declaration”
are two variable elements that can be replaced by other
elements. To simplify the representation of the grammar of
template declaration, we break down the “Templateparame-
ter” into two elements, corresponding to two messages (i.e.,
TemplateParameter1 and TemplateParameter2) in Fig. 5. For
the “Declaration”, for the sake of simplicity, we assume it can
be replaced by three basic elements, i.e., “;”, “class A {};”, or
“void foo(){}”.

2) Mutation stage: In this stage, as shown on the left
side in Fig. 3, we first take the structured format file as

7https://github.com/google/fuzzing/blob/master/docs/
structure-aware-fuzzing.md

1 message TemplateDeclaration {
2 required Tempalate template_name = 1;
3 required TemplateParameter template_param = 2;
4 required Declaration declaration = 3;
5 }
6 message TemplateParameter {
7 oneof _ {
8 TemplateParameter1 template_parameter1 = 1;
9 TemplateParameter2 template_parameter2 = 2;

10 }
11 }
12 message TemplateParameter1 {
13 required Class class_name = 1;
14 optional Identifier identifier_name = 2;
15 }
16 message TemplateParameter2 {
17 required Typename typename_name = 1;
18 optional Identifier identifier_name = 2;
19 }

Fig. 5. A simplified example of the structured format

input and then mutate it to various mutants. Each mutant will
correspond to a test program. Since there are three fields in
a structured format file, how to choose suitable alternative
fields (i.e., “oneof ” and “optional”) is important to ensure the
effectiveness of the structure-aware mutation. Here, we apply
a strategy, called the Equal-Chance Selection (ECS) strategy,
which uses the equal probability to select alternative fields
in the relationship of “optional” and “oneof ”. For “required”
fields, we choose all of them; For “optional” fields, we have a
probability of 0.5 to choose; For “oneof ” fields, we choose
them with a probability of 1/n (n is the number of total
elements in the “oneof ” field). Finally, the mutated file is
delivered to the program producer where the C++ programs
can be generated. The rationale behind this strategy is that we
give a relative equal possibility to each element in grammar
specification, which will potentially improve the diversity of
generated test programs. Note that the probability of the
selection can be easily changed to satisfy other requirements,
which addresses the main limitation in Dharma [27].

As the program producer, we take the following guidelines
to conduct the generation:

• Each element could be converted to one real C++ code
snippet, e.g., “Class” is converted to the keyword “class”.

• For variable identifiers, we give fixed names in different
basic types (e.g., char, int, long) and reuse them in
arithmetic expressions. For other types of identifiers,
e.g., class name or template name, we maintain different
recording lists to catch them and fetch different identifiers
in those lists when needed. Since we provide the manage-
ment of various types of identifiers and guarantee the free
of undefined variables while Grammarinator [28] only
supports a subset of variable identifiers, our approach
could perform better in generating required test programs

• We set an upper bound during the mutation to avoid
infinite recursion.

By performing the above guidelines, we can finally generate
multiple test programs for our requirements. For example, in
Fig. 5, the mutator takes the message “TemplateDeclaration”
as input. After employing the ECS strategy, the mutated

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 6

file is delivered to the program producer to generate a C++
program. According to the generation guidlines, each part
in the “TemplateParameter” grammar can be constructed by
the following basic elements: Class — “class”, Typename —
“typename”, Identifier — “T”, and Declaration — “;”, “class
A {};”, or “void foo(){}”.

After the mutation stage, we can produce numerous C++ test
programs. For the above example, we can obtain the following
unique 12 real C++ code snippets:

code 1: template <class> class A {};
code 2: template <class> void foo() { }
code 3: template <class> ;
code 4: template <typename> class A { };
code 5: template <typename> void foo() { }
code 6: template <typename> ;
code 7: template <class T> class A { };
code 8: template <class T> void foo () { }
code 9: template <class T> ;
code 10: template <typename T> class A { };
code 11: template <typename T> void foo() { }
code 12: template <typename T> ;

In this way, code snippets 3, 6, and 9 will trigger the
“Accept-invalid” bug illustrated in Fig. 1(b) in Section II-A.

As a brief summary, through the above two stages, many
test programs that are likely to trigger bugs in C++ compiler
front-ends are generated by CCOFT. Such test programs follow
the grammar rules well, but they could be invalid because
of lacking type-checking or including invalid semantics. Note
that a compiler can not exactly tell whether a test program
is syntactic valid or not, it only successfully compiles a
program when it is semantic valid (if no bugs). Therefore,
most of our generated test programs can not be successfully
compiled. However, after using the strategies in Section III-B,
a filtered and reduced small code snippet that follows the
grammar rules can be compiled and further used to expose
bugs in compilers. Overall, compared with the state-of-the-art
approaches, CCOFT is first equipped with a full set of variable
records to avoid the undefined identifiers problem. Then, we
provide a configurable option to enable the grammar rule
controlling with a little effort. Overall, the above capabilities
make CCOFT much more effective in generating test programs
that are more likely to trigger bugs in compiler front-ends.

B. Bug Identification

Bug identification aims to identify potential bugs through
differential testing strategies. Specifically, bug identification
includes five components, including (1) differential testing
strategies, which are based on two different compilers c1
and c2 to produce error outputs o1 and o2 if one of the
compilers does not crash or time out, (2) an error decomposer
Decomposer to decompose o1 and o2 to error records e1
and e2, (3) an error aligner EAligner to align to find the
inconsistent records based on the above two error records, (4)
a bug filtering Filter to filter potential bugs to real ones, and
(5) a bug reducer Reducer to reduce the programs to small
code snips that can trigger the same symptoms.

Our bug identification assumes that the two compilers c1
and c2 should emit the same or similar set of compiler output
records (i.e., e1 and e2) for the same input p in the ideal

Algorithm 1: Decomposing compiler error output
Input: text, the textual error output of a compiler
Output: a set of decomposed error records

1 Function EDecomposer(String text):
/* lines contain error messages */

2 error_lines ←− ∅
/* a dictionary record of a error message

compiler front-end */
3 dict ←− ∅
4 foreach line in text do
5 if "error" in line then
6 error_lines.append(line)

7 result ←− ∅
8 foreach line in error_lines do
9 dict = line.split(":")

10 result += dict

11 return result

situation. This assumption is critical for the effectiveness of
differential testing because any detected inconsistent compiler
outputs between two compilers would be considered as a bug
in either c1 or c2 (or both).

1) Differential testing strategies: In this study, we adopt
the following strategies to identify potential bugs in C++
compiler front-ends.

Crash or Time-out Detecting (CTD). This strategy detects
crash or time-out bugs when the compiler c1 or c2 crashes or
times out during the compilation of a program p.

Cross-Version Strategy (CVS), and Cross-Compiler
Strategy (CCS). The above two are widely used differential
testing strategies in compiler testing [18] [31] [41]. CVS
selects different versions of a compiler for differential testing.
CCS chooses different compilers that have been maintained
independently. We do not apply the cross-optimization strategy
because we focus on bugs in compiler front-ends.

Cross-Standard Strategy (CSS). This strategy compiles
a program p by a single compiler under different ISO C++
standards (a program language standard provided by the in-
ternational organization for standardization). For example, we
can compile a program by GCC with the C++11 standard (i.e.,
-std=c++11) enabled in c1 and with the C++14 standard (i.e.,
-std=c++14) enabled in c2. Here, we assume that inconsistent
compiler outputs are either caused by the ISO C++ standard
upgrade, or C++ compiler front-ends should emit upgrade
prompt diagnostic messages. Otherwise, there might be a bug,
e.g., the Diagnostic bug in Fig. 1(c) is caused by an unclear
upgrade indication of compiler outputs.

2) EDecomposer: The EDecomposer is designed to de-
compose the complex compiler output. It takes the original
error messages as input and gives out the records which can
be easily applied in EAligner.

It is challenging to compute the symmetric differences of
e1 and e2 directly because compiler errors are in natural
language and different compiler emits error diagnostic mes-
sages in different ways. To resolve this problem, we design
a specific EDecomposer to decompose error messages for
each compiler. Algorithm 1 describes the general workflow

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 7

Algorithm 2: Aligning two sets of error records
Input: e1 and e2, error records decomposed of two compiler

front-ends
Output: symmetric difference between e1 and e2

1 Function EAligner(String text):
/* a set of elements to remove from e1 */

2 rm1 ←− ∅
/* a set of elements to remove from e2 */

3 rm2 ←− ∅
/* Step 1. Remove equivalent pairs */

4 foreach (a, b) ∈ (e1× e2) do
5 if (a, b) is an equivalent pair then
6 rm1 ←− rm1 ∪ {a}, rm2 ←− rm2 ∪ {b}

/* Step 2. Compute pairs with missing
records */

/* a set of pairs with missing records */
7 missing ←− ∅
8 foreach a ∈ (e1\rm1) do
9 missing = missing ∪{(a,⊥)}

10 foreach b ∈ (e2\rm2) do
11 missing = missing ∪{(⊥, b)}
12 return missing

of decomposing the error outputs of a given compiler. The
function EDecomposer() obtains a string containing all the
error messages (between lines 4 and 6) and then splits it into
a list (between lines 7 and 10). Thus, each element, e.g., the
line number, the column number, and the error description
line, in the text format can be represented as an individual error
record. Specifically, the function decomposes the output string
into a dictionary-like record by extracting the line number, the
column number, and the error description.

For example, the error message under GCC compilation
in Fig. 1(b) or cases 3, 6, or 9 from the collection stage in
Section III-A2 can be decomposed into one record as follows:
{“line” : “1”, “column” : “18”, “message” : “error: expected
unqualified-id before ‘;‘ token ”}.

3) EAligner: The objective of EAligner is to obtain incon-
sistent records. In this component, two sets of decomposed
error records are taken as inputs. After aligning, the missing
records will be the outputs. The missing records may be
duplicated, so we filter them in the next step.

By aligning errors in e1 and e2, we can obtain the incon-
sistencies among compilers, compiler versions, or ISO C++
standards. The output of the aligner is a list of pairs, of which
the first element is either an error in e1 or ⊥ (i.e., nothing)
and the other is either an error in e2 or ⊥. The process of the
aligner produces the following two categories of pairs (a,b).

• Equivalence a ∈ e1 ∧ b ∈ e2, and both have the same
location (i.e., the line number and the column number)
and do not consider the description of two error messages.
This category does not indicate compiler front-ends bugs
and we ignore it.

• Missing Records (a ∈ e1 ∧ b =⊥)∨ (a = ⊥ ∧ b ∈ e2).
This category includes the main body of inconsistencies
for users to investigate.

Algorithm 2 presents the workflow of EAligner. It first cuts
down all equivalent pairs from e1 and e2 (between lines 5 and

Algorithm 3: Filtering crashes and inconsistencies
Input: crashed_source (the source of crashed program),

missing (the missing record after aligning)
Output: a set of unquie error records

1 Function Filter(File crashed_source, String re_missing):
/* a set of unique crashing records */

2 crash_set ←− ∅
/* a set of unique missing records */

3 missing_set ←− ∅
/* Step 1. Filter crashes */

4 foreach s.cc in crashed_source do
5 if s.cc not in crash_set then
6 crash_set.append(s.cc)

/* Step 2. Filter inconsistencies */
7 foreach miss in missing do
8 if miss not in missing_set then
9 missing_set.append(miss)

10 return [crash_set, missing_set]

7), then it constructs the inconsistent pairs from the remaining
errors in e1\rm1 and e2\rm2 (between lines 9 and 13). From
the given example in Section III-B2, as Clang emits nothing
under the program, i.e., occurring inconsistent outputs, the pair
will save the missing record “(e1,⊥)”.

4) Filter: After obtaining the crashes or time-out cases
and inconsistent missing records from EAligner, we cut out
duplicate cases or records in the filter.

Algorithm 3 describes the overall procedure to filter
out duplicates. For crashes or time-out programs, we ex-
ecute each program that makes the compiler crash. If
the crash point (i.e., specific place crashed or assertion
failed) is not in crash_set, we add it to the set (be-
tween lines 4 and 6). For example,“internal compiler er-
ror: in cxx_incomplete_type_diagnostic, at cp/typeck2.c:584”
and “TextDiagnostic.cpp:1026 Assertion ‘StartColNo <= End-
ColNo "Invalid range!"’ failed” are two different records in
crash_set for GCC and Clang. As the number of time-out cases
is small (only two cases), we do not filter them.

For inconsistent error diagnostic programs, we first remove
the duplicates according to the message part in the e1 or
e2 record (between lines 7 and 9). Specifically, due to the
incompatibilities between GCC and Clang, one error in GCC
may correspond to two or more errors in Clang and vice versa.
We record every inconsistent recording after we manually
analyze them, then we use those records to filter the same
corresponding error records automatically. With the assistance
of such an incremental process, we only need to analyze
the new inconsistent records to improve the capability of
identifying real bugs. In practice, the number of recordings
is less than 100. For example, cases 3, 6, and 9 collected in
Section III-A2 will produce three duplicated missing records
in EAligner. We filter the above three cases into a unique one
to make the process of Reducer more efficient.

5) Reducer: As concluded in [8], the bug-revealing test
cases are typically small, with 80% having fewer than 45 lines
of code. Thus, we adopt it and try to reserve the smaller code
snippet. Once a test program triggers a bug in compilers, it is

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 8

critical to reduce the program to a smaller size by removing
irrelevant programs before submitting the bug into GCC or
Clang bug repository. In this process, we reduce test programs
into small ones as the reduced programs not only help us to
understand the issue and avoid reporting a duplicate but also
assist developers in triaging or fixing the bug.

For crashes and time-out programs, we use C-Reduce [42]
to reduce them. For the program that triggers inconsistent
error diagnostic bugs, we reduce the programs manually since
C-Reduce can not deal with these cases well. For example,
when we only need to reserve a specific error message for a
test program, the reduced test program by C-Reduce always
triggers many error messages, which is not helpful to analyze
the root causes of a bug for developers. In our study, each
test program generated by CCOFT is relatively small, thus this
manual reduction does not need a lot of time (one at most ten
minutes). In the manual process, we try to keep the unique
error message while compiling a code snippet and adjust the
code by the author’s experience. The goal is to make GCC
produce one error message while Clang does not, and vice
versa. Thus, one Reject-valid, Accept-invalid, or Diagnostic
bug can be detected.

Even though we use the above manual process, our reduc-
tion process is effective in practice, as a test program can be
finally reduced to a few lines (usually within five lines). We
will investigate more about auto-reduction in future work.

IV. EMPIRICAL EVALUATION

In this section, we evaluate the effectiveness of CCOFT.
In particular, we seek to investigate the following research
questions (RQs):

• RQ1: Can CCOFT find more bugs in compiler front-ends
compared with state-of-the-art approaches?

• RQ2: Can the proposed ECS strategy help CCOFT detect
more bugs in compiler front-ends?

• RQ3: How is the bug-finding capability of CCOFT in
practice?

RQ1 evaluates the bug-finding capability of CCOFT com-
pared with two state-of-the-art approaches (i.e., Dharma and
Grammarinator). In particular, we run CCOFT, Dharma, and
Grammarinator in the same testing period and compare them
from two aspects, i.e., the number of detected bugs and the
number of unique bugs (that can be detected by one approach
but can not be detected by other approaches). RQ2 investigates
the impact of the proposed ECS strategy on the bug-finding
capability of CCOFT. We compare CCOFT with its variant (one
with the default selection strategy) to examine how the ECS
strategy contributes to CCOFT. RQ3 evaluates the capability
of CCOFT for detecting bugs in C++ compiler front-ends in
practice. Specifically, we run CCOFT on the newly developed
versions of compilers, and evaluate the practical bug-finding
capability of CCOFT from three aspects, i.e., the number of
detected bugs, the bug type of confirmed bugs, and the bug
importance (i.e., severity and priority).

A. Experimental Setup
Our evaluation is performed on a Linux PC with Intel(R)

CoreTM i7-7700 CPU @3.60GHZ × 8 processor and 16GB

RAM running Ubuntu 18.04 operating system. In the study, we
use two popular mainstream compilers as subjects, i.e., GCC
and Clang, following the existing compiler testing studies [18]
[20] [21] [43] [26].

CCOFT implementation. For the implementation of C++
program generator, we take the C++ grammar file in Grammar-
v4 [44] as input, which is a collection of various ANTLR
[37] grammars. The grammars in Grammar-v4 are publicly
available and are contributed by developers around the world.
The proposed structure-aware mutation strategy ECS is imple-
mented by Google libprotobuf-mutator [45], which is a useful
library to randomly mutate structured format (e.g., Protobuf
[40]) file and has good scalability in supporting a user-
defined mutation strategy. Specifically, we provide a standard
structured format file (i.e., protobuf-specification file) that
describes the structure of the inputs (i.e., C++ grammars). This
structured format file is then compiled into a C++ class C. A
program input corresponds to an object of class C; the mutator
generated via libprotobuf-mutator operates on such objects:
it modifies a given object into a mutant object. Further, we
also provide a producer function that transforms an object of
class C into a C++ test program, as aforementioned in Section
III-A2. For the implementation of the bug identification, each
part, i.e, EDecomposer, EAligner, Filter, and Reducer, is
written by Python or Shell.

Baseline approaches for RQ1. To illustrate the bug-finding
capability of CCOFT, we compare CCOFT with two state-
of-the-art approaches, i.e., Dharma [27] and Grammarinator
[28]. Dharma is a grammar-based fuzzer provided by Mozilla,
which allows a user to define a grammar file and then
generate programs under the given grammar. Grammarinator
is a random test program generator that creates test programs
according to the grammar in Grammar-v4 [44]. We choose
Dharma and Grammarinator since (1) they are the most
directly related to our study as both of them use a grammar-
aided method to generate test programs, and (2) they are
relatively state-of-the-art approaches and have been widely
used in recent researches (e.g., [46] and [47] both use the
above two approaches in their experiments).

CCOFT variant for RQ2. To show the effectiveness
of the proposed ECS strategy, we compare CCOFT with
CCOFT(¬ECS), a variant of CCOFT without ECS, to examine
how the ECS strategy contributes to CCOFT. Here, we use the
default mutation strategy provided by libprotobuf-mutator to
conduct the structure-aware mutation in CCOFT(¬ECS). This
default strategy selects the “required” and “oneof” fields with
a high probability (99%) while applying the “optional” field
in a structured format file with a low probability (1%). This is
because the default mutation strategy of libprotobuf-mutator
is also efficient when users do not customize the mutation
strategy for their applications.

Differential testing scenarios. In the bug identification
process, we consider four strategies to differentially test C++
compiler front-ends, i.e., Crash or Time-out Detecting(CTD),
Cross-Version Strategy(CVS), Cross-Compiler Strategy(CCS),
and Cross-Standard Strategy(CSS). For CVS and CCS, we use
two versions of GCC (GCC-10.1 and a developed version

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 9

(a) Reject-valid (b) Accept-invalid (c) Diagnostic (d) Crash (e) Time-out (f) All

Fig. 6. The number of unique bugs in GCC and Clang found by CCOFT, Dharma [27], and Grammarinator [28].

of GCC) and Clang (Clang-10.0 and a developed version
of Clang). In the CSS scenario, we use a few well-known
ISO C++ standard versions, i.e., C++11, C++14, and C++17,
to detect bugs in C++ compiler front-ends among different
C++ standards, on the development (trunk) versions of GCC
and Clang at the time of our study are used in our study.
For CTD, we detect bugs if the above three strategies get
stuck, i.e., crash or time out, when compiling a test program.
CCS, CVS, and CSS strategies target detecting bugs caused
by inconsistent compiler outputs, i.e., Reject-valid, Accept-
invalid, and Diagnostic bugs, while CTD aims to detect Crash
or Time-out bugs.

B. Answer to RQ1

Motivation. This RQ aims to investigate the bug-finding
capability of CCOFT compared with two state-of-the-art ap-
proaches, i.e., Dharma and Grammarinator.

Approach. To evaluate RQ1, we run CCOFT, Dharma, and
Grammarinator under the same testing period of 10 days
(the same as [48]). Both Dharma and Grammarintor can not
directly run with C++ grammars defined in the grammar-
v4 repository. To set up Drama, we follow the instruction
8 and transfer the C++ grammars into the “.dg” format to
generate test programs. The running setup of Grammarinator
can be found here 9. Note that Grammarinator can not handle
a deeper depth (e.g., 50) as we aforementioned, therefore
we set the recursion depth to 30 for all the three tools.In
order to verify whether the detected bugs are real bugs by
analyzing them in the bug repositories of GCC and Clang,
we opt for two developed compilers that are committed on
2020-05-31 of GCC10 and Clang11. Further, we analyze the
bug-finding capability of CCOFT compared with two state-of-
the-art approaches from two aspects, i.e., the number of all
detected bugs and the number of unique bugs.

Results. Table I shows the number of detected bugs by each
approach and Fig. 6 presents the number of detected unique
bugs. In Table I, the first column is the type of detected bugs
in RQ1, and the following three columns are the number of
all detected bugs for Dharma, Grammarinator, and CCOFT.
Specifically, “n(x+y)” indicates that the corresponding ap-
proach totally finds “n” bugs, and “x” and “y” mean the certain

8https://github.com/MozillaSecurity/dharma
9https://github.com/renatahodovan/grammarinator/issues/21
10GCC commit by 05430b9b6a7c4aeaab595787ac1fbf6f3e0196a0
11Clang commit by f4b0ebb89b3086a2bdd8c7dd1f5d142fa09ca728

TABLE I
THE NUMBER OF BUGS (TOTAL BUGS (GCC BUGS + CLANG BUGS))

DETECTED BY CCOFT AND THE COMPARATIVE APPROACHES

Bug Types Dharma Grammarinator CCOFT

Reject-valid 4 (4+0) 4 (4+0) 6 (6+0)
Accept-invalid 4 (3+1) 4 (3+1) 7 (5+2)

Diagnostic 7 (6+1) 7 (6+1) 9 (7+2)
Crash 1 (1+0) 4 (4+0) 16 (13+3)

Time-out 1 (1+0) 0 (0+0) 2 (1+1)

Total 17 19 40

number of detected bugs in GCC and Clang, respectively.
From Table I, we can see that the total number of detected
bugs by CCOFT is 40, which is much larger than those detected
by Dharma (i.e., 17) and Grammarinator (i.e., 19), achieving
135% and 111% improvement, respectively.

To show the relationships among bugs detected by the
three approaches, we draw five Venn diagrams in Fig. 6. In
particular, Fig. 6(a) to Fig. 6(e) show the Venn diagrams of
detected bugs by each approach categorized by bug types,
and Fig. 6(f) is the number of overall bugs detected by each
approach. From Fig. 6, we can see that CCOFT always detects
the largest number of unique bugs. However, Grammarinator
only detects a unique Crash bug and Dharma is not able to
detect any unique bugs in our testing period. In particular, from
Fig. 6(d), the total number of unique bugs detected by CCOFT
is 13, which is much larger than those detected by Dharma
(i.e., 0) and Grammarinator (i.e., 1). Also, CCOFT can detect
98% (40 out of 41) of bugs during a 10-day testing period.

Conclusion: The results demonstrate that CCOFT has a
better bug-finding capability compared with Dharma and
Grammarinator, achieving an improvement of 135% and
111% in the number of detected bugs, respectively.

C. Answer to RQ2

Motivation. It is unknown how the proposed ECS strategy
affects the effectiveness of CCOFT. This RQ evaluates the
impact of the proposed ECS strategy on the bug-finding
capability of CCOFT.

Approach. To investigate the impact of the proposed ECS
strategy, we conduct an experiment to compare CCOFT and

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 10

TABLE II
THE NUMBER OF BUGS (TOTAL BUGS (GCC BUGS + CLANG BUGS))

DETECTED BY CCOFT AND CCOFT(¬ECS)

Bug Types CCOFT(¬ECS) CCOFT

Reject-valid 3 (3+0) 6 (6+0)
Accept-invalid 6 (4+2) 7 (5+2)

Diagnostic 8 (7+1) 9 (7+2)
Crash 4 (2+2) 16 (13+3)

Time-out 1 (1+0) 2 (1+1)

Total 22 40

TABLE III
THE NUMBER OF ALL THE REPORTED BUGS FOR GCC AND CLANG

Bug Status GCC Clang Total

Fixed 13 7 20
Confirmed 43 3 46
Assigned 1 0 1

Worksforme 0 3 3
Pending 10 39 49

Duplicate 10 3 13
Invalid 1 3 4

Total 78 58 136

CCOFT(¬ECS), a variant of CCOFT which uses the de-
fault selection strategy. Specifically, we run CCOFT and
CCOFT(¬ECS) with the same compiler versions during the
same testing period as in RQ1. Then, we compare the bug-
finding capability of CCOFT and CCOFT(¬ECS) in terms of
the number of detected bugs.

Results. Table II shows the comparative results of the
number of detected bugs during a 10-day testing period on
CCOFT and CCOFT(¬ECS). From Table II, we can observe
that CCOFT with ECS strategy can always detect more bugs
than the default selection strategy. In particular, CCOFT can
detect 16 Crash bugs whereas the CCOFT(¬ECS) is only able
to detect 4 Crash bugs, achieving a 300% improvement in
detecting Crash bugs. Totally, CCOFT can detect 40 bugs while
CCOFT(¬ECS) can only find 22 bugs. In other words, CCOFT
achieves an improvement of 82% in terms of the number of
detected bugs over CCOFT(¬ECS). The reason is apparent.
Without more chances to select different kinds of grammar
elements, the generated programs can only consist of the
shadow piece of code snippets, which are less likely to trigger
bugs in compilers. This is also the reason why our mutation
strategy performs well in generating diverse test programs,
thus significantly increasing the bug-finding capabilitiy.

Conclusion: The results show that our proposed Equal-
Chance Selection strategy is effective to help CCOFT
detect more bugs in C++ compiler front-ends. Specifically,
under the same testing period, CCOFT can detect 82%
more bugs than CCOFT(¬ECS).

D. Answer to RQ3

Motivation. Detecting real bugs in mature compilers is
difficult. This RQ assesses the practical bug-finding capability

TABLE IV
THE NUMBER OF BUG TYPES OF CONFIRMED BUGS

But Types GCC Clang Total

Reject-valid 5 0 5
Accept-invalid 8 2 10

Diagnostic 9 3 12
Crash 34 5 39

Time-out 1 0 1

Total 57 10 67

of CCOFT for detecting bugs in C++ compiler front-ends.
Approach. To evaluate the bug-finding capability of CCOFT

in practice, we choose the daily built trunk version of GCC
and Clang on the non-continuous period within three months
(from early June to mid-August in 2020) as the developed
version. This is because compiler developers always fix bugs
in the development trunk more promptly than in stable versions
[20] [21] [43]. In detail, we evaluate the practical bug-finding
capability of CCOFT from three aspects, i.e., the number of
detected bugs, the bug type of confirmed bugs, and the bug
importance.

Results. In this subsection, we first describe the quantitative
and qualitative results of our reported bugs and then assort
some impactful bugs found by CCOFT.

1) Quantitative and qualitative results: This subsection
describes some statistical properties of the discovered bugs,
including the number of reported bugs and their quality.

Basic Statistics of Detected Bugs. Table III shows the
detail of all the reported bugs so far. In total, we have reported
136 bugs, of which 67 are confirmed/assigned/fixed (the first
three rows in the table) by developers. It may take some time
before developers consider our reported bugs. During this time,
the trunk has changed and these changes may suppress the
bug. Developers mark such bug reports as “WorksForMe” in
Clang, and we have three Clang bugs of this kind. We do
not expose this kind of bug in GCC because GCC developers
responded to our bugs much more quickly. Note that for Clang,
only 10 out of 58 bugs are confirmed or fixed, which is likely
due to limited human resources as active Clang developers
went to the Swift project [18]. Besides, we have reported
a few duplicate invalid reports, which were rejected by the
developers (see more details about the false positive rate
below). All the reported bugs can be found in the summarized
table here 12.

Table V further lists the details of all confirmed or fixed
bugs, including their identities (ID), priorities (Prio.), cur-
rent status (Status), bug types (Type), identification strategies
(Stra.), and affected versions (Affe.Vers.). We do not list the
severity status here because only one bug is marked as “minor”
and two bugs are marked as “enhancement” in all confirmed
bugs. Note that we only list affected versions in our tested
compilers. There can be many bugs that affect older versions.
For example, the first bug listed in Table V affects all versions
from GCC-4.1 to current trunk versions. Those long lurking
bugs also confirm the usefulness of our reported bugs.

12https://github.com/haoxintu/CCOFT/blob/main/reported-bugs.md

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 11

TABLE V
DETAILS OF CONFIRMED/ASSIGNED/FIXED BUGS REPORTED BY CCOFT

ID Pri. Status Type Stra. Affe. Vers.

1 GCC-95597 P3 Conf. Rej.-val. CCS 10.1-11.0 (trunk)
2 GCC-95610 P3 Conf. Rej.-val. CCS 10.1-11.0 (trunk)
3 GCC-95641 P3 Conf. Diag. CCS 10.1-11.0 (trunk)
4 GCC-95657 P3 Conf. Diag. CSS 10.1-11.0 (trunk)
5 GCC-95672 P3 Fixed Crash CTD 10.1-11.0 (trunk)
6 GCC-95742 P5 Conf. Diag. CCS 10.1-11.0 (trunk)
7 GCC-95744 P3 Conf. Diag. CCS 10.1-11.0 (trunk)
8 GCC-95807 P3 Conf. Acc.-inv. CCS 10.1-11.0 (trunk)
9 GCC-95820 P3 Fixed Crash CTD 10.1-11.0 (trunk)
10 GCC-95872 P5 Conf. Diag. CCS 6.1-11.0 (trunk)
11 GCC-95925 P5 Conf. Crash CTD 10.1-11.0 (trunk)
12 GCC-95927 P5 Conf. Crash CTD 10.1-11.0 (trunk)
13 GCC-95932 P5 Conf. Crash CTD 10.1-11.0 (trunk)
14 GCC-95935 P3 Assi. Crash CTD 10.1-11.0 (trunk)
15 GCC-95937 P3 Conf. Crash CTD 10.1-11.0 (trunk)
16 GCC-95938 P3 Conf. Crash CTD 10.1-11.0 (trunk)
17 GCC-95945 P5 Conf. Crash CTD 10.1-11.0 (trunk)
18 GCC-95954 P5 Conf. Crash CTD 10.1-11.0 (trunk)
19 GCC-95956 P5 Conf. Crash CTD 10.1-11.0 (trunk)
20 GCC-95972 P3 Conf. Crash CTD 10.1-11.0 (trunk)
21 GCC-95999 P3 Conf. Crash CTD 10.1-11.0 (trunk)
22 GCC-96045 P1 Fixed Diag. CVS 11.0 (trunk)
23 GCC-96048 P5 Conf. Crash CTD 10.1-11.0 (trunk)
24 GCC-96068 P3 Fixed Rej.-val. CCS 10.1-11.0 (trunk)
25 GCC-96077 P3 Fixed Rej.-val. CCS 10.1-11.0 (trunk)
26 GCC-96082 P3 Fixed Rej.-val. CCS 10.1-11.0 (trunk)
27 GCC-96103 P3 Fixed Diag. CCS 10.1-11.0 (trunk)
28 GCC-96116 P3 Conf. Acc.-inv. CCS 10.1-11.0 (trunk)
29 GCC-96119 P3 Conf. Acc.-inv. CCS 10.1-11.0 (trunk)
30 GCC-96137 P1 Fixed Time-out CTD 10.1-11.0 (trunk)
31 GCC-96162 P4 Conf. Crash CTD 10.1-11.0 (trunk)
32 GCC-96182 P3 Conf. Diag. CSS 10.1-11.0 (trunk)
33 GCC-96183 P3 Conf. Acc.-inv. CSS 10.1-11.0 (trunk)
34 GCC-96184 P2 Conf. Acc.-inv. CSS 10.1-11.0 (trunk)
35 GCC-96209 P3 Conf. Diag. CSS 10.1-11.0 (trunk)
36 GCC-96328 P4 Fixed Crash CTD 10.1-11.0 (trunk)
37 GCC-96329 P4 Conf. Crash CTD 10.1-11.0 (trunk)
38 GCC-96359 P4 Conf. Crash CTD 10.1-11.0 (trunk)
39 GCC-96360 P3 Conf. Crash CTD 10.1-11.0 (trunk)
40 GCC-96364 P3 Conf. Crash CTD 10.1-11.0 (trunk)
41 GCC-96380 P2 Fixed Crash CTD 10.1-11.0 (trunk)
42 GCC-96437 P4 Conf. Crash CTD 10.1-11.0 (trunk)
43 GCC-96438 P5 Conf. Crash CTD 10.1-11.0 (trunk)
44 GCC-96440 P4 Conf. Crash CTD 10.1-11.0 (trunk)
45 GCC-96441 P3 Conf. Crash CTD 10.1-11.0 (trunk)
46 GCC-96442 P4 Conf. Crash CTD 10.1-11.0 (trunk)
47 GCC-96462 P2 Fixed Crash CTD 10.1-11.0 (trunk)
48 GCC-96464 P3 Conf. Acc.-inv. CCS 10.1-11.0 (trunk)
49 GCC-96465 P4 Conf. Crash CTD 10.1-11.0 (trunk)
50 GCC-96467 P4 Conf. Crash CTD 10.1-11.0 (trunk)
51 GCC-96478 P3 Conf. Acc.-inv. CCS 10.1-11.0 (trunk)
52 GCC-96552 P3 Conf. Acc.-inv. CCS 10.1-11.0 (trunk)
53 GCC-96553 P3 Conf. Crash CCS 10.1-11.0 (trunk)
54 GCC-96623 P1 Fixed Crash CTD 10.1-11.0 (trunk)
55 GCC-96636 P3 Conf. Crash CTD 10.1-11.0 (trunk)
56 GCC-96637 P5 Conf. Crash CTD 10.1-11.0 (trunk)
57 GCC-96638 P4 Conf. Crash CTD 10.1-11.0 (trunk)
58 Clang-46231 P3 Fixed Acc.-inv. CCS 10.0-12.0 (trunk)
59 Clang-46417 P3 Fixed Diag. CCS 10.0-12.0 (trunk)
60 Clang-46425 P3 Conf. Diag. CCS 10.0-12.0 (trunk)
61 Clang-46428 P3 Conf. Diag. CCS 10.0-12.0 (trunk)
62 Clang-46484 P3 Fixed Crash CTD 10.0-12.0 (trunk)
63 Clang-46487 P3 Fixed Crash CTD 10.0-12.0 (trunk)
64 Clang-46540 P3 Conf. Crash CTD 10.0-12.0 (trunk)
65 Clang-46682 P3 Fixed Crash CTD 10.0-12.0 (trunk)
66 Clang-46729 P3 Fixed Acc.-inv. CCS 10.0-12.0 (trunk)
67 Clang-46859 P3 Fixed Crash CTD 10.0-12.0 (trunk)

False Positive Rate. We adopt the following mechanism to
calculate the false positive rate (same as [18]):

[
rejected

reported
,
rejected+ pending

reported
]

In our evaluation, the range is [4
136 ,

4+49
136] = [3%, 39%]. Note

that 39% is simply an upper bound of the false positive rate,

which is mainly due to a relatively large number of pending
bugs (especially for Clang). For each potential bug, we have
carefully checked its validity before we reported it, so we
believe most of the pending bugs will be accepted.

Bug Types. We categorize the bugs reported by our study
into five classes as mentioned in Section II-A, namely Reject-
valid, Accept-invalid, Diagnostic, Crash, and Time-out. Table
IV shows the number of each type of confirmed bug detected
by CCOFT. From Table IV, we can see that the number of crash
bugs is larger than those of other types of bugs. There are 39
crash bugs out of the 67 confirmed/assigned/fixed bugs, which
indicates that crash bugs currently are the most prominent
cause of reducing the quality of C++ compiler front-ends. For
the implications of those crashing bugs, please refer to the
discussion in Section V for more details.

Bug Importance. In the bug repository of GCC and Clang,
the importance of bugs is described as a combination of
priority and severity. Priority means the level of priority to
fix a bug, and severity measures the impact of bugs, ranging
from the most severe, release blocker, to the least severe,
enhancement. Both fields are adjusted by developers when
they debug bugs. As shown in the online summarized table12,
most of our confirmed bugs have the default priority P3, i.e.,
42 (69%) of them are marked as P3 and above. Only one
reported bug is labeled as “Minor” and two are labeled as
“Enhancement” by developers, and the rest have the normal
severity. Compiler developers are also concerned about bugs in
compiler front-ends, 19 of our reported bugs have been fixed
in the latest released versions of GCC and Clang. Note that
one bug is confirmed as “ASSIGN” which means that they are
on the way to fixing the bug.

It is worth noting that our reported bugs are impor-
tant for improving the quality of two mainstream com-
pilers. The evidence is that 6 bugs are marked as “P1”
(i.e., GCC#96045, GCC#96137, GCC#96623) or “P2” (i.e.,
GCC#96184, GCC#96380, and GCC#96462) which are
treated as the most severe and urgent level bugs in the
GCC community. It is also worth mentioning that these bugs
obtained high appraisals, as a GCC developer said, “This case
is useful and it shows that the change in somewhere has a
corner case that I didn’t consider.” 13 and a Clang developer
also convinced “These are useful bug reports. Thank you for
filing them!”14. Furthermore, we can notice that a vast number
of bugs are crashes caused by invalid test programs. Those
bugs can have important implications in practice (more details
are discussed in Section V). The above positive feedbacks
confirm that our reported bugs are indeed important and useful.

2) Assorted Confirmed Bug Samples: This subsection
samples some bugs detected by CCOFT to demonstrate its
ability to find a broad range of bugs in C++ compiler front-
ends. These bugs have a real impact on developers and some
are even marked as the highest severity “P1” or “P2”, such as
GCC bug #96137, which was discussed in Section II-A.

GCC Reject-valid bug #96068. The following program is
rejected by the compiler front-end of GCC but accepted by the

13https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96137#c2
14https://bugs.llvm.org/show_bug.cgi?id=46487#c2

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 12

compiler front-end of Clang. The problem in GCC’s compiler
front-end is that an extra semicolon outside of a function
should be allowed after C++11, but GCC rejects this in almost
all versions.
1 void foo() { };

GCC Reject-valid bug #95610. In the following code, the
compiler front-end of GCC cannot deal with global variables
in a class definition. This situation also occurs when replacing
the class with other class specifiers, i.e., struct, union.

1 class s;
2 class :: s { } ss;

GCC Accept-invalid bug #96116. The following invalid
program is accepted by the compiler front-end of GCC. “enum
struct/class” can only be used when defining an enumeration
or as the part of a standalone forward declaration, but GCC
accepts it to be a “using declaration”.

1 using alias1 = enum struct E1;
2 using alias2 = enum class E2;

Clang Accept-invalid bug #46729. The following invalid
program is another case that the compiler front-end of GCC
accepts well. A template, a template explicit specialization,
and a class template partial specialization shall not have a C
linkage, but Clang treats it as a valid program.

1 template <class> void F(){ }
2 extern "C" {
3 template < > void F<int>();
4 }

GCC Diagnostic bug #96045. The following program just
misses “;” in line 2, but the compiler front-end of GCC leaves
out the column number in the error diagnostic message. This
bug has been marked as “P1”, the most urgent level in the
GCC bug repository, and the GCC developer fixed it soon.

1 template <class> class A {};
2 struct A <int>

Clang Crash bug #46682. The following small program
that the compiler front-end of Clang compiling an invalid
explicit declaration, makes the compiler front-end of Clang
crash. It means that Clang could not successfully deal with
the error recovery in some cases.

1 int b = 0;
2 int foo () { explicit (&& b);}

GCC Crash bug #95820. In the following code, the com-
piler front-end of GCC crashes while compiling. According to
the developer’s experience, although the above program is a
Crash-on-invalid program, it appears in various reduced test
cases from different situations. Thus, it is important to enhance
C++ compiler front-ends to output the error messages rather
than crashing directly.

1 constexpr (*a)()−>bool,

GCC Time-out Bug #96137. The following program makes
the C++ compiler front-end of GCC stuck in an endless
analysis for the program. Time-out bug is important since it
may waste developers’ time in compiling their programs and
is hard to find the root cause in the long compilation time.

Notably, such a small test program triggers a corner case that
the GCC developer didn’t consider 15, and this bug has been
marked as “P1” as well. The above fact indicates our strategy
for detecting bugs in compiler front-ends is useful.
1 void a () { .operator b }

Conclusion. The above results clearly demonstrate that
CCOFT is effective in detecting bugs in C++ compiler
front-ends in practice. In three months, it has reported
a total of 136 new bugs in 5 types for GCC and Clang.
Among them, 67 bugs have been confirmed/assigned/fixed
by developers.

V. DISCUSSION

In this section, we discuss the relationships among the
used differential strategies in our evaluation, the implication
of crashes caused by invalid code, comparison with existing
coverage-guided fuzzing tools, location of reported bugs, and
limitations of CCOFT.

The relationships among the used differential strategies.
Each strategy has a unique ability in detecting bugs in compiler
front-ends. Generally, CTD, CVS, and CSS have lower false-
positive rates because it is easy to detect the crash or time-
out bugs, as well as the bugs in different versions, different
optimization levels, and different standards. CCS can hunt
more types of bugs in compiler front-ends than others, but
it can also report more false positives. This is because of
the difference between two different compilers, e.g., GCC and
Clang. Although the design of Clang is to be a replacement
for GCC, it still has some incompatibilities with GCC. Thus,
there would be false positives if the compiler c1 and c2 support
different sets of error messages. For example, Clang allows
narrowing conversion of a value from “int” to “bool” by
default, while GCC has no such problem. In this paper, the
CTD, CVS, and CSS strategies may serve as good complements
to CCS, because they test compilers from different perspectives
and only require a single compiler.

The implication of crashes caused by invalid code.
Among all the reported bugs, it is clear to see a large portion
of them belongs to crashes, which indicates that the error
handling or error recovery capability in compiler front-ends
is quite limited. Notably, the flaws of incorrect error handling
in compilers (especially for compilers used in web applications
[49]) can lead to severe security vulnerabilities and even ex-
ploits by attackers [13], such as XML compiler front-end [14].
The apparent behavior of such crashes is that detailed internal
error messages such as stack traces, database dumps, and error
codes are displayed when the crash is emitted. These messages
reveal implementation details that should never be revealed.
Furthermore, such details can provide hackers with important
clues on potential flaws in the site. In short, messages followed
by crashing could lead to information leakage [50], [51].
For example, in CVE-2017-563816, a compiler front-end bug
caused by invalid test input has been proved to be exploitable.

15https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96137#c2
16https://nvd.nist.gov/vuln/detail/cve-2017-5638

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 13

Although there are no such open exposes caused by
crashes in C++ compiler front-ends, by leveraging the detailed
stack information emitted from two compilers, e.g., in bug
GCC#96359 and Clang#46560, we conjecture that it is pos-
sible to induce similar exploits in some elegant manners by
expert attackers. We leave it as future work.

Comparison with coverage-guided fuzzing tools. The
interested readers may also be concerned about the comparison
result between our approach and coverage-guided fuzzing
techniques. We now discuss our experience when conducting
the comparison. AFL [35] is a traditional coverage-guided
fuzzing and has a great impact in both academia and industry.
It should be applicable to test compilers to some degree.
However, we can not find a single crash or performance issue
during a 7-day testing period while running AFL upon GCC
compiler. We also run the test programs using our differential
testing strategies to identify other types of bugs, however, we
can not find any possible bugs. It is no surprise to us because
the intrinsic bit/byte level mutation operations make little sense
for producing bug-revealing test programs for testing compiler
front-ends. We also compared CCOFT with Prog-fuzz [52],
which aims to find compiler crashes. We run Prog-fuzz in 10
days. Finally, Prog-fuzz only finds one GCC crash which can
also be found by CCOFT.

Location of reported bugs. As stated in Section II-B, we
can not exactly tell whether a Reject-valid, Accept-invalid,
Diagnostic, Crash, or Time-out bug is indeed inside the which
part of a compiler front-end, i.e., lexical analysis, syntactic
analysis (parsing), or semantic analysis. We can only know
the precise location of a bug until the bug is fixed. For
example, for the bug GCC#96077, the developer fixed it on
the source file “parser.c”. Furthermore, from the code review
conclusion “Fix tentative parsing of enum-specifier”, we can
know this bug occurred in the parser (syntactic analyzer) of the
GCC compiler front-end indeed. Another reason comes from
the implementation of GCC and Clang, as different phases
in front-ends are always interleaved. For instance, although
one crash occurred in semantic analysis, the root cause may
come from the former parsing errors. In our study, among 20
fixed bugs, with the assistance of the fixed file name or the
description from developers, 19 of them are in the parsers and
one in semantic analysis.

Limitations. CCOFT randomly generates C++ test programs
and then tests compilers based on differential testing. We
did not use any coverage feedback information although not
all coverage measurements are equal [53]. Therefore, CCOFT
may have trouble in finding deeper semantic bugs in C++
compiler front-ends. However, several automatic coverage-
based fuzzing approaches [54] [55] have been proposed, and
we plan to integrate such techniques for wider applications.
Another limitation in our approach may be the programs
generated by CCOFT, which means those programs are not
semantically valid thus may be hard to trigger optimization
bugs in compilers. Specifically, we can mostly test the front-
end in compilers in this study, as the generated programs
are most grammatically correct but still could be invalid, for
example, some type-checking mechanisms are not satisfied.
However, as the results show, these programs indeed are more

likely to trigger bugs in C++ compiler front-ends, which is
complementary to existing random program generators (e.g.,
Csmith [19] or Yarpgen [25]).

VI. THREATS TO VALIDITY

In our evaluation, there are two major threats to validity.
The Threat to Internal Validity. The internal threat to

validity mainly comes from the implementation of CCOFT.
In our study, an efficient implementation of the proposed
mutation strategy is key to successfully employing CCOPT
to detect C++ bugs in compiler front-ends. Hence, the imple-
mentation of the proposed mutation strategy may influence the
testing efficiency of CCOFT. To alleviate this threat, we adopt
libprotobuf-mutator [45], a widely used library developed by
Google to randomly mutate protobuffers, to implement the
proposed mutation strategy.

The Threat to External Validity. The threat to external
validity mainly lies in the reduction of test programs. For
the bugs detected through inconsistent compiler outputs, we
manually reduced them. This is because C-Reduce cannot
work well for these bugs. If we only want to preserve one
certain error in the reduced test program, some other errors
besides the target error are emitted during the reduction
process. Thus, this reduction may depend on the researcher’s
proficiency in the C++ programming language, such that the
reduction process may be time-consuming and the reduced test
program may not be minimized. To reduce this threat, the first
two authors manually reduce the corresponding programs, and
the third author carefully checks the reduced bugs, because all
of them have many years of C++ development experience.
Another threat comes from the generality of our proposed
framework. In general, it could be easily adapted for testing
other compilers for other languages. For one thing, all the
100+ language grammars in Grammar-v4 [44] can be tuned
to generate other structured test cases as CCOFT does. For
another, the bug identification strategy can be tailored for other
compiler front-end targets, e.g., Javascript [56] [57]. Javascript
is widely used and issues in these systems can cause severe
security vulnerabilities.

VII. RELATED WORK

Compiler testing is currently the predominant approach to
guarantee the quality of compilers [22] [31]. The existing
compiler testing techniques could be divided into three cat-
egories, i.e., Random Differential Testing (RDT), Different
Optimization Levels (DOL), and Equivalence Modulo Inputs
(EMI) [31] [58]. RDT detects compiler bugs by comparing
the outputs of different compilers with the same specification,
whereas DOL compares the results produced by the same
compiler with different optimization levels. Most of techniques
[19] [26] [59]–[65] [66] based on RDT and DOL use randomly
generated test programs to test a compiler. Csmith [19] and
Yarpgen [25] are two widely used C++ program generators
to test C++ compilers. However, the test programs generated
by Csmith and Yarpgen are completely valid and free of
undefined behavior, which makes it hard or impossible to find
bugs in C++ compiler front-ends as the front-ends will be

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 14

passed quickly. Dharma [27] and Grammarinator [28] are also
two widely used test program generators that generate C++
programs by taking the C++ grammar format as inputs. To
generate new test programs, some studies focus on mutating
the existing programs by employing a set of mutation rules
[20] [21] [52] [67] [43] [62], such as Prog-fuzz [52] and
Clang-fuzzer [67]. Prog-fuzz can generate a subset of semi-
valid C++ test programs, while Clang-fuzzer [67] generates a
subset of valid C++ test programs to test Clang API.

Different from RDT and DOL, EMI [21] is derived from
metamorphic testing [68], which detects bugs on a single
compiler by comparing the outputs of a set of semantically
equivalent test programs. The core idea of EMI is that the
given equivalent test programs should produce the same results
when executing under the given test inputs. Otherwise, there
must be a compiler bug [21]. In particular, EMI has three
instantiations, i.e., Orion [21], Athena [20], and Hermes [43].
Orion randomly prunes unexecuted statements to generate
variant programs [21], while Athena uses the specific operation
(e.g., delete or insert) in code regions that are not executed
under the inputs [20]. In contrast, Hermes [43] generates
variant programs via both live and dead code regions mutation.

Our study is also based on RDT. However, we focus on
testing C++ compiler front-ends with test programs generated
by a structure-aware grammar mutation strategy. Besides, our
program generation approach enables the support of various
variable records to avoid the undefined identifiers problem and
a configurable option to control the selection of grammar rules
with little effort. In addition, we use a new differential testing
strategy (i.e., cross-standard strategy) to detect bugs in C++
compiler front-ends based on different ISO C++ standards.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a framework named CCOFT to
detect bugs in C++ compiler front-ends. Two challenges have
been addressed in CCOFT, namely the acquisition of test
programs that are more likely to trigger bugs in C++ compiler
front-ends and the bug identification from complex compiler
outputs. The empirical evaluation results show that CCOFT
can detect 135% and 111% more bugs than two state-of-the-
art approaches, i.e., Dharma and Grammarinator, respectively.
Within three months, we have reported 136 bugs for two
mature C++ compilers, i.e., GCC and Clang, and 67 of them
have been confirmed/assigned/fixed by developers.

In the future work, we are actively pursuing to (1) extend
the proposed framework to test compiler front-ends for other
languages (e.g., Javascript), (2) combine it with coverage
feedback in compiler source code to detect deeper semantic
bugs, and (3) integrate it with advanced techniques that can
help generate semantic valid test programs to disclose more
tricky optimization bugs in C++ compilers.

ACKNOWLEDGMENTS

The authors would like to thank all developers who par-
ticipated in this work and the anonymous reviewers for their
insightful comments. This work is supported in part by the
National Natural Science Foundation of China under grant no.
61902181, 62032004, and CCF-SANGFOR OF 2022003.

REFERENCES

[1] B. Stroustrup, “Thriving in a crowded and changing world: C++
2006–2020,” Proc. ACM Program. Lang., vol. 4, no. HOPL, 2020.
[Online]. Available: https://doi.org/10.1145/3386320

[2] “Infographic: C and c++ facts we learned before going ahead with
clion,” 2015. [Online]. Available: https://blog.jetbrains.com/clion/2015/
07/infographics-cpp-facts-before-clion/

[3] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon,
“Semantic fuzzing with zest,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
329–340.

[4] W. Pan, Z. Chen, G. Zhang, Y. Luo, Y. Zhang, and J. Wang, “Grammar-
agnostic symbolic execution by token symbolization,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2021, pp. 374–387.

[5] C. Salls, C. Jindal, J. Corina, C. Kruegel, and G. Vigna,
“Token-Level fuzzing,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2795–2809. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/salls

[6] “New_c_parser,” 2020. [Online]. Available: https://gcc.gnu.org/wiki/
New_C_Parser

[7] “A single unified parser for c, objective c, c++, and objective c++,” 2020.
[Online]. Available: http://clang.llvm.org/features.html#unifiedparser

[8] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding compiler
bugs in gcc and llvm,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, 2016, pp. 294–305.
[Online]. Available: https://doi.org/10.1145/2931037.2931074

[9] Z. Zhou, Z. Ren, G. Gao, and H. Jiang, “An empirical study of
optimization bugs in gcc and llvm,” Journal of Systems and Software,
vol. 174, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121220302740

[10] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, & tools. Pearson Education India, 2007.

[11] W. M. Waite and G. Goos, Compiler construction. Springer Science
& Business Media, 2012.

[12] M. A. Howard, “A process for performing security code reviews,” IEEE
Security & privacy, vol. 4, no. 4, pp. 74–79, 2006.

[13] S. Jana, Y. J. Kang, S. Roth, and B. Ray, “Automatically detecting
error handling bugs using error specifications,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 345–362.

[14] C. Späth, C. Mainka, V. Mladenov, and J. Schwenk, “{SoK}:{XML}
parser vulnerabilities,” in 10th USENIX Workshop on Offensive Tech-
nologies (WOOT 16), 2016.

[15] “Cve-2017-5638: The apache struts vulnerability explained,” 2020.
[Online]. Available: https://www.synopsys.com/blogs/software-security/
cve-2017-5638-apache-struts-vulnerability-explained/

[16] H. Jiang, Z. Zhou, Z. Ren, J. Zhang, and X. Li, “Ctos: Compiler testing
for optimization sequences of llvm,” IEEE Transactions on Software
Engineering, 2021.

[17] Y. Tang, H. Jiang, Z. Zhou, X. Li, Z. Ren, and W. Kong, “Detecting
compiler warning defects via diversity-guided program mutation,” IEEE
Transactions on Software Engineering, 2021.

[18] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warning
defects,” in 2016 IEEE/ACM 38th International Conference on Software
Engineering, 2016, pp. 203–213.

[19] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and
understanding bugs in c compilers,” in Proceedings of the
32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

[20] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via
guided stochastic program mutation,” in Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2015, pp. 386–399. [Online].
Available: https://doi.org/10.1145/2814270.2814319

[21] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2014, pp. 216–
226. [Online]. Available: https://doi.org/10.1145/2594291.2594334

[22] M. Marcozzi, Q. Tang, A. F. Donaldson, and C. Cadar, “Compiler
fuzzing: How much does it matter?” Proceedings of the ACM on
Programming Languages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

[23] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning to
prioritize test programs for compiler testing,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering, 2017, pp. 700–711.

IEEE TRANSACTIONS ON RELIABILITY[AUTHORS’ DRAFT VERSION] 15

[24] R. Morisset, P. Pawan, and F. Zappa Nardelli, “Compiler testing via a
theory of sound optimisations in the c11/c++ 11 memory model,” ACM
SIGPLAN Notices, vol. 48, no. 6, pp. 187–196, 2013.

[25] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for c and
c++ compilers with yarpgen,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–25, 2020.

[26] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 95–105.

[27] “Dharma,” 2020. [Online]. Available: https://github.com/
MozillaSecurity/dharma

[28] R. Hodován, Á. Kiss, and T. Gyimóthy, “Grammarinator: a grammar-
based open source fuzzer,” in Proceedings of the 9th ACM SIGSOFT
international workshop on automating TEST case design, selection, and
evaluation, 2018, pp. 45–48.

[29] P. M. Bueno, W. E. Wong, and M. Jino, “Improving random test sets
using the diversity oriented test data generation,” in Proceedings of
the 2nd international workshop on Random testing: co-located with
the 22nd IEEE/ACM International Conference on Automated Software
Engineering, 2007, pp. 10–17.

[30] A. M. R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S. Spoto,
and W. E. Wong, “Component-based software: An overview of testing,”
Component-Based Software Quality, pp. 99–127, 2003.

[31] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and
L. Zhang, “A survey of compiler testing,” ACM Comput. Surv., vol. 53,
no. 1, 2020. [Online]. Available: https://doi.org/10.1145/3363562

[32] B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier,
B. Harrington, A. Kamil, A. Karkare, C. McDonald, P.-M. Osera,
J. L. Pearce, and J. Prather, “Compiler error messages considered
unhelpful: The landscape of text-based programming error message
research,” 2019, pp. 177–210. [Online]. Available: https://doi.org/10.
1145/3344429.3372508

[33] D. McCall and M. Kölling, “A new look at novice programmer errors,”
ACM Trans. Comput. Educ., vol. 19, no. 4, 2019. [Online]. Available:
https://doi.org/10.1145/3335814

[34] P. K. Aditya and W. E. Wong, “Comparing the fault detection effective-
ness of mutation and data flow testing: An empirical study,” 1993.

[35] “Afl,” 2020. [Online]. Available: https://lcamtuf.coredump.cx/afl/
[36] “Libfuzzer,” 2020. [Online]. Available: https://llvm.org/docs/LibFuzzer.

html
[37] “Antlr,” 2020. [Online]. Available: https://www.antlr.org/
[38] “Json,” 2020. [Online]. Available: https://www.json.org/json-en.html
[39] “Cap’n proto,” 2020. [Online]. Available: https://capnproto.org/
[40] “Protocol buffers,” 2020. [Online]. Available: https://developers.google.

com/protocol-buffers
[41] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed

differential testing of jvm implementations,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2016, pp. 85–99. [Online]. Available: https:
//doi.org/10.1145/2908080.2908095

[42] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang,
“Test-case reduction for c compiler bugs,” in Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2012, pp. 335–346. [Online]. Available: https:
//doi.org/10.1145/2254064.2254104

[43] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2016, pp. 849–863. [Online]. Available: https://doi.org/
10.1145/2983990.2984038

[44] “Grammar-v4,” 2020. [Online]. Available: https://github.com/antlr/
grammars-v4

[45] “Libprotobuf-mutator,” 2020. [Online]. Available: https://github.com/
google/libprotobuf-mutator

[46] R. Gopinath and A. Zeller, “Building fast fuzzers,” 2019. [Online].
Available: https://arxiv.org/abs/1911.07707

[47] N. Havrikov and A. Zeller, “Systematically covering input structure,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, 2019, pp. 189–199. [Online].
Available: https://doi.org/10.1109/ASE.2019.00027

[48] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang, “History-
guided configuration diversification for compiler test-program genera-

[49] “Improper error handling,” 2020. [Online]. Available: https://owasp.org/
www-community/Improper_Error_Handling

tion,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering, 2019, pp. 305–316.

[50] “Owasp top 10 security risks & vulnerabili-
ties,” 2020. [Online]. Available: https://sucuri.net/guides/
owasp-top-10-security-vulnerabilities-2021/

[51] “Vulnerabilities by types,” 2020. [Online]. Available: https://www.
cvedetails.com/vulnerabilities-by-types.php

[52] “Prog-fuzz,” 2020. [Online]. Available: https://github.com/vegard/
prog-fuzz

[53] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting for
input prioritization.” in 27th Annual Network and Distributed System
Security Symposium, 2020.

[54] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “Fudge: Fuzz driver
generation at scale,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 975–985. [Online].
Available: https://doi.org/10.1145/3338906.3340456

[55] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen:
Automatic fuzzer generation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2271–2287. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/ispoglou

[56] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering, 2019, pp. 724–735.

[57] B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele,
and A. Zeller, “Parser-directed fuzzing,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2019, pp. 548–560. [Online]. Available: https:
//doi.org/10.1145/3314221.3314651

[58] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.

[59] C. Lindig, “Random testing of c calling conventions,”
in Proceedings of the Sixth International Symposium on Automated
Analysis-Driven Debugging, 2005, pp. 3–12. [Online]. Available:
https://doi.org/10.1145/1085130.1085132

[60] M. A. Alipour, A. Groce, R. Gopinath, and A. Christi, “Generating
focused random tests using directed swarm testing,” in Proceedings
of the 25th International Symposium on Software Testing and Analysis,
2016, pp. 70–81. [Online]. Available: https://doi.org/10.1145/2931037.
2931056

[61] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, 2015, pp.
65–76. [Online]. Available: https://doi.org/10.1145/2737924.2737986

[62] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, 2017. [Online]. Available: https://doi.org/10.1145/
3133917

[63] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 327–337. [Online]. Available:
https://doi.org/10.1145/2771783.2771785

[64] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[65] G. Ofenbeck, T. Rompf, and M. Püschel, “Randir: Differential
testing for embedded compilers,” in Proceedings of the 2016 7th ACM
SIGPLAN Symposium on Scala, 2016, pp. 21–30. [Online]. Available:
https://doi.org/10.1145/2998392.2998397

[66] Y. Yang, Y. Zhou, H. Sun, Z. Su, Z. Zuo, L. Xu, and B. Xu, “Hunting for
bugs in code coverage tools via randomized differential testing,” in 2019
IEEE/ACM 41st International Conference on Software Engineering,
2019, pp. 488–499.

[67] “Clang-fuzzer,” 2020. [Online]. Available: https://github.com/llvm/
llvm-project/tree/master/clang/tools/clang-fuzzer

[68] T. Y. Chen, “Metamorphic testing: A simple method for alleviating the
test oracle problem,” in Proceedings of the 10th International Workshop
on Automation of Software Test, 2015, pp. 53–54.

